
PyRIC v0.1.6.4: User Manual

Dale V. Patterson

wraith.wireless@yandex.com

January 2, 2017

Contents

1 About PyRIC 2
1.1 Background . 4
1.2 Naming Conventions . 4
1.3 Cards . 4
1.4 Benchmarks . 5

2 Installing PyRIC 6

3 Using PyRIC 6
3.1 Interacting with the Wireless Core and Wireless NICs: pyw.py 7

3.1.1 One-time vs Persistent Sockets . 8
3.2 Additional Tools . 9
3.3 Interacting with the Kernel: libnl.py and libio.py . 9

4 Extending PyRIC 10
4.1 Porting C . 10
4.2 Input/Output Control (ioctl) . 10
4.3 Netlink and nl80211 . 11

Appendices 13

Appendix A API: pyw.py 13
A.1 Constants . 13
A.2 Objects/Classes . 14
A.3 Functions . 14

1

Appendix B API: channels.py 18
B.1 Constants . 18
B.2 Functions . 18

Appendix C API: hardware.py 19
C.1 Constants . 19
C.2 Functions . 19

Appendix D API: ouifetch.py 19
D.1 Constants . 19
D.2 Functions . 19

Appendix E API: rfkill.py 19
E.1 Constants . 20
E.2 Functions . 20

Appendix F API: libnl.py 20
F.1 Constants . 20
F.2 Classes/Objects . 20

F.2.1 NLSocket . 21
F.2.2 GENLMsg . 21

F.3 Functions . 22

Appendix G API: libio.py 23
G.1 Functions . 23

Appendix H Copyright and License 23

1 About PyRIC

PyRIC (is a Linux only) library providing wireless developers and pentesters the ability to identify,
enumerate and manipulate their system's wireless cards programmatically in Python. Pentesting
applications and scripts written in Python have increased dramatically in recent years. However,
these tools still rely on Linux command lines tools to setup and prepare and restore the system for
use. Until now. Why use subprocess.Popen, regular expressions and str.�nd to interact with your
wireless cards? PyRIC puts iw, ifcon�g, rfkill, udevadm, airmon-ng and macchanger in your hands
(or your program).

PyRIC is designed with Python 2.7 in mind but has now been made compatible with Python 3.5.
It will also work on Python 3.0 but you will have to hard code the command line options in the two
examples as Python 3.0 does not include the module argparse
PyRIC is:

1. Pythonic: No ctypes, SWIG etc. PyRIC rede�nes C header �les as Python and uses sockets
to communicate with kernel.

2. Self-su�cient: No third-party �les used, PyRIC is completely self- contained

3. Fast: (relatively speaking) PyRIC is faster than using iw through subprocess.Popen

2

4. Parseless: Get the output you without parsing output from iw. Never worry about iw
updates and rewriting your parsers.

5. Easy: If you can use iw, you can use PyRIC

At it's heart, PyRIC is a Python port of (a subset of) iw and by extension, a Python port of
Netlink w.r.t nl80211 functionality. The original goal of PyRIC was to provide a simple interface to
the underlying nl80211 kernel support, handling the complex operations of Netlink seamlessy while
maintaining a minimum of "code walking" to understand, modify and extend. But, why stop there?
Since it's initial inception, PyRIC has grown to include ioctl support to replicate features of ifcon�g
such as getting or setting the mac address and has recently implemented rkill support to soft block
or unblock wireless cards.

While users can utilize libnl.py to communicate directly with the kernel, the true utility of PyRIC
is pyw.py. Like iw, pyw provides an interface/bu�er between the caller and the kernel, handling all
message construction, parsing and data transfer transparently and without requiring any Netlink
knowledge or experience.

At this time, PyRIC can:

• enumerate interfaces and wireless interfaces,

• identify a cards driver, chipset and manufacturer,

• get/set hardware address,

• get/set ip4 address, netmask and or broadcast,

• turn card on/o�,

• get supported standards, commands or modes,

• get if info,

• get dev info,

• get phy info,

• get link info,

• get STA (connected AP) info,

• get/set regulatory domain,

• get/set mode,

• get/set coverage class, RTS threshold, Fragmentation threshold and retry limits,

• add/delete interfaces,

• determine if a card is connected,

• get link info for a connected card,

• enumerate ISM and UNII channels,

3

• block/unblock rfkill devices.

And, through libnl.py and libio.py, users can extend the above functionality by creating additional
commands.

1.1 Background

PyRIC arose out of a need in Wraith (https://github.com/wraith-wireless/wraith) for Python
nl80211/netlink and ioctl functionality. Originally, Wraith used ifcon�g, iwcon�g and iw via sub-
process.Popen and parsed the output. There are obvious shortfalls with this method, especially
in terms of iw that is actively changing (revisions break the parser) and I started looking for an
open source alternative. There are several open source projects out there such as pyroute, pymnl
(and the python �les included in the libnl source) but they generally have either not been main-
tained recently or come with warnings. I desired a simple interface to the underlying nl80211 kernel
support that handles the complex operations of netlink seamlessy while maintaining a minimum of
"code walking" to understand, modify and extend. I decided to write my own because I do not
need complete netlink functionality, only that provided by generic netlink and within the nl80221
family. Additionally, for Wraith, I do not need a full blown port of iw et. al. functionality to Python
but only require the ability to turn a wireless nic on/o�, get/set the hwaddr, get/set the channel,
determine some properties of the card and add/delete interfaces.
So, why did I do this and why is it done "this" way? When I �rst started to explore the idea of
moving away from iw output parsing, I looked at the source for iw, and existing Python ports. Just
to �gure out how to get the family id for nl80211 required reading through �ve di�erent source �les
with no comments. To that extent, I have attempted to keep subclassing to a minimum, the total
number of classes to a minimum, combine �les where possible and where it makes since and keep
the number of �les required to be open simultaneously in order to understand the methodology and
follow the program to a minimum. One can understand the PyRIC program �ow with only two �les
open at any time namely, pyw and libnl. In fact, only an understanding of pyw is required to add
additional commands although an understanding of libnl.py is helpful especially, if for example, the
code is to be extended to handle multicast or callbacks.

1.2 Naming Conventions

The terms interface, device and radio are all used interchangeably throughout to refer to a network
interface controller (NIC). The following terms will always have one meaning:

• dev - the device name i.e. wlan0 or eth0 of a NIC,

• phy - the physical index of a NIC i.e. the 0 in phy0,

• i�ndex - the interface index of a NIC,

• card or Card - a NIC abstraction, an object used in pyw functions see the following section
for a description.

1.3 Cards

A Card is merely a wrapper around a tuple t = (phy index,device name,i�ndex). Since the underlying
Netlink calls sometimes require the physical index, sometimes the device name, and sometimes the

4

chset Total Avg Longest Shortest

Popen(iw) 588.3059 0.0588 0.0682 0.0021

one-time 560.3559 0.0560 0.0645 0.0003

persistent 257.8293 0.0257 0.0354 0.0004

Table 1: Benchmark: Popen(iw) vs pyw

i�ndex, pyw functions1 take a Card object which doesn't require callers to know which identi�er to
use for each function. There are four primary methods to creating a Card:

1. pyw.getcard returns a Card object from a given dev,

2. pyw.devinfo returns the dict info where info['card'] is the Card object. (This function will
take either a card or a i�ndex),

3. pyw.devadd returns a new Card object (this function will only take a phy),

4. pyw.ifaces returns a list of tuples t = (Card,mode) sharing the same phy as a given dev.

A side a�ect of using Cards is that many of the netlink calls require the i�ndex. The i�ndex is
found through the use of ioctl, meaning two sockets have to be created and two messages have to
be sent, received and parsed in order to execute the command. With Cards, the i�ndex is requested
for only once.

Keep in mind that any identi�er (phy, dev, i�ndex) can be invalidated outside of your control.
Another program can rename your interface, that is change the dev without your knowledge. De-
pending on what functions are being used this may not be noticed right away as the phy will remain
the same. Also for usb devices, (if the usb is disconnected and reconnected) will have the same dev
but the phy and i�ndex will be di�erent.

1.4 Benchmarks

PyRIC makes use of several "extensions" to speed up pyw functions:

1. Persistent sockets: pyw provides the caller with functions and the ability to pass their own
netlink (or ioctl socket) to pyw functions

2. One-time request for the nl80211 family id: pyw stores the family id in a global variable

3. Consolidation di�erent "reference" values are consolidated in one class (see the previous
section)

While small, these changes can improve the performance of any programs using pyw. Table 1 shows
benchmarks for hop time on an Alfa AWUS036NH conducted 10000 times. Note that we are not
implying that PyRIC is faster than iw. Rather, the table shows that PyRIC is faster than using
Popen to execute iw. Using one-time sockets, there is a di�erence of 28 seconds over Popen and
iw with a small decrease in the average hoptime. Not a big di�erence. However, the performance
increased dramatically when persistent netlink sockets are used with the total time and average hop
time nearly halved.

1Not all functions accept only a Card, devinfo() accepts either a Card or a dev, devadd accepts either a Card or
a i�ndex and phyadd accepts only a physical index

5

Source Stability Recency Installation

pip 5 3 5

PyPI 5 3 4

PyRIC Web 4 4 4

Github 3 5 3

Table 2: Stability vs Recency vs Installation

2 Installing PyRIC

The easiest way to install PyRIC is through PyPI:

sudo pip install PyRIC

You can also install PyRIC from source. The tarball can be downloaded from:

• PyPi: https://pypi.python.org/pypi/PyRIC,

• PyRIC Web: http://wraith-wireless.github.io/PyRIC, or

• Github: https://github.com/wraith-wireless/PyRIC.

After downloading, extract and run:

sudo python setup.py install

If you just want to test PyRIC out, download your choice from above. After extraction, move the
pyric folder (the package directory) to your location of choice and from there start Python and im-
port pyw. It is very important that you do not try and run it from PyRIC which is the distribution
directory. This will break the imports pyw.py uses.

You will only be able to test PyRIC from the pyric directory but, if you want to, you can add it
to your Python path and run it from any program or any location. To do so, assume you untared
PyRIC to /home/bob/PyRIC. Create a text �le named pyric.pth with one line

/home/bob/PyRIC

and save this �le to /usr/lib/python2.7/dist-packages (or /usr/lib/python3/dist-packages if you
want to try it in Python 3).

3 Using PyRIC

As stated previously, PyRIC provides a set of functions to interact with your system's radio(s) and
the ability to interact directly with the kernel through netlink and ioctl sockets.

6

3.1 Interacting with the Wireless Core and Wireless NICs: pyw.py

If you can use iw, you can use pyw. The easist way to explain how to use pyw is with an example.
Imagine your wireless network, on ch 6, has been experiencing di�culties lately and you want to
capture some tra�c to analyse it. Listing 1 shows how to set up a wireless pentest environment.

1 : import pyr i c # pyr i c e r r o r (and ecode EUNDEF)
2 : from pyr i c import pyw # fo r iw f u n c t i o n a l i t y
3 : from pyr i c . u t i l s . channe l s import r f 2 ch # r f to channel conver s i on
4 :
5 : dev = ' wlan0 '
6 : d in f o = pyw . dev in fo (dev)
7 : card = d in fo [' card ']
8 :
9 : pyw . down(card)

10 : pyw . macset (card , ' 0 0 : 0 3 : 9 3 : 5 7 : 5 4 : 4 6 ')
11 :
12 : pdev = ' pent0 '
13 : pcard = pyw . devadd (card , pdev , ' monitor ')
14 : f o r i f a c e in pyw . i f a c e s (card) :
15 : i f i f a c e [0] . dev != pcard . dev :
16 : pyw . devdel (i f a c e [0])
17 : pyw . up(pcard)
18 :
19 : pyw . chse t (pcard , 6 , None)
20 :
21 : # DO s t u f f here
22 :
23 : card = pyw . devadd (pcard , card . dev , d in f o ['mode '])
24 : pyw . devdel (pcard)
25 : pyw . macset (card , d in f o ['mac '])
26 : pyw . up(card)

Listing 1: Setting up a Wireless Pentest Environment

Listing 1 shows basic pyw functions and is the basic shell used in another project, Wraith[4], to
instantiate a wireless (802.11) sensor - (for a full listing of all pyw functions see Appendix A) - with
scanning capabilities.

Lines 1 and 2 should always be included as they import the pyric error and pyw functions. Line 3
imports the rf2ch conversion function.

In lines 5 through 10, a Card is created from the device wlan0. The info dict is save IOT to re-
store later. Next, the mac address of wlan0 is changed. Note, the device has to be brought down �rst.

Starting on line 12, a device named 'pent0' is created in monitor mode. First, a new Card, pcard
is create in monitor mode. Then, all interfaces on the same phy are deleted 2. The new Card is
brought up and set to channel 6 NOHT.

Restoring the device starts on line 23, where the virtual interface is deleted, the previous interface
is restored, the mac address is reset and the old Card is brought up.

2we have found that it is better to delete all interfaces on the same phy ensuring that external processes don't
interfere with the new device

7

An extended version of Listing 1 can be found in the examples directory.

3.1.1 One-time vs Persistent Sockets

The example in Listing 1 uses one-time sockets (netlink and ioctl). When using iw, there are
several things that occur prior to the actual command or request being submitted. First, iw creates
a netlink socket. Then, iw will request the family id for nl80211. The relative time spent doing
this is neglible but, it is redundant and it may become noticeable in programs that repeatedly use
the Netlink service. Once comlete, iw closes the socket. In some cases, the i�ndex of the device is
needed and iw will also initiate an ioctl call to retrieve it. PyRIC eliminates these redundancies by
using a global variable in pyw that stores the family id after the �rst time it is requested and by
providing callers the option to use persistent sockets.

• One-time Sockets Similar to iw. The command, creates the netlink socket (or ioctl socket),
composes the message, sends the message and receives the response, parses the results, closes
the socket and returns the results to the caller. At no time does the caller need to be aware
of any underlying Netlink processes or structures.

• Persistent Sockets Communication and parsing only. The onus of socket creation and
deletion is on the caller which allows them to create one (or more) socket(s). The pyw
functions will only handle message construction, message sending and receiving and message
parsing.

The caller needs to be cognizant of whether the function requires a netlink or ioctl socket. Passing
the wrong type will result in an error.

NOTE: One must remember that there is an upper limit to the number of open netlink sockets. It
is advised to use one-time functions as much as possible and save the use of persistent sockets for
use in code that repeatedly makes use of netlink.

The latest version of pyw.py (v 0.1.*) implements this functionality through the use of what I call
templates3, Listing 2 and stubs Listing 3.

de f f c t t emp la t e (arg0 , arg1 , . . , argn , n l sock=None) :
put parameter v a l i d a t i o n (i f any) here

i f n l sock i s None : _nlstub_ (fc t template , arg0 , arg1 , . . . , argn)

command execut ion
. . .
r e turn r e s u l t s

Listing 2: A Basic Netlink Function Template

The template function in Listing 2 checks if nlsock is instantiatd 4. If so, it proceeds to execution. If
there is no socket, the stub is executed which creates one. If something other than a netlink socket
is at argv[0], an error will be raised during execution.

3I use templates and stubs for the lack of any better naming convention
4ioctl calls operate in the same manner

8

de f _nlstub_ (f c t ,∗ argv) :
n l sock = None
try :

n l sock = nl sock = nl . n l_socket_al loc ()
argv = l i s t (argv) + nl sock=None
return f c t (∗ argv)

except pyr i c . e r r o r :
r a i s e # catch & r e l e a s e

f i n a l l y :
i f n l sock : n l . n l_socket_free (n l sock)

Listing 3: Function _nlstub_

The stub function, Listing 3 allocates a netlink socket, executes the original (now with a netlink
socket) and then destroys the netlink socket.

1 : import pyr i c # pyr i c e r r o r s
2 : from pyr i c import pyw # fo r iw f u n c t i o n a l i t y
3 : from pyr i c . l i b import l i b n l as n l # f o r n e t l i n k so cke t s
4 :
5 : n l sock = nl . n l_socket_al loc (timeout=1)
6 : card = pyw . getcard (' wlan0 ' , n l sock)
7 : p r i n t pyw . devmodes (card , n l sock)
8 : n l . n l_socket_free (n l sock)

Listing 4: Using Persistent Sockets

Listing 4, shows the creation of a persistent netlink socket that is used in the creation of a card and
in retrieved the card's supported modes.

Use Python's built in help features on pyw functions or see Appendex A to determine what type of
socket is needed.

3.2 Additional Tools

In the utils directory, PyRIC includes channels.py, hardware.py, rfkill.py and ouifetch.py. These
provide a port of rfkill, channel/frequency enumeration and device chipset, driver retrieval as
well as some mac address functions. More information can be found in the Appendices and in
README.md.

3.3 Interacting with the Kernel: libnl.py and libio.py

The kernel interfaces, libnl.py and libio.py are located in the lib directory. They handle socket
creation/deletion, message creation/parsing and kernel communication. Aside from creating and
deleting persistent sockets, there is little need to access their functions unless you plan on extending
pyw functionality. As such, a further discussion of libnl.py and libio.py can be found in the next
section.

9

4 Extending PyRIC

You may �nd that pyw does not o�er some of the functionality you need. Using libnl.py and/or
libnl.io, additional functionality can be added to your program.

It is helpful if the reader has a basic knowledge of netlinks. For a review, see "Communicating
between the kernel and user-space in Linux using Netlink Sockets" [3].

4.1 Porting C

All Python ports of C header �les can be found in the net directory. C Enums and #de�nes are
ported using constants. C structs are ported using three Python structures and the Python struct
package:

1. a format string for packing and unpacking the struct

2. a constant specifying the size of the struct in bytes

3. a function taking the attributes of the struct as arguments and returning a packed string

Listing 5 shows the C de�nition of the nlmsghdr found in netlink.h.

s t r u c t nlmsghdr {
__u32 nlmsg_len ;
__u16 nlmsg_type ;
__u16 nlmsg_flags ;
__u32 nlmsg_seq ;
__u32 nlmsg_pid ;

} ;

Listing 5: C Struct nlmsghdr

And Listing 6 shows the ported version in Python.

nl_nlmsghdr = "IHHII"
NLMSGHDRLEN = s t ru c t . c a l c s i z e (nl_nlmsghdr)
de f nlmsghdr (mlen , nltype , f l a g s , seq , pid) :

r e turn s t r u c t . pack (nl_nlmsghdr ,NLMSGHDRLEN+mlen , nltype , f l a g s , seq , pid)

Listing 6: Corresponding Python De�nition

When using pyw, dealing with these structures is handled transparently by libnl.py and libio.py.
When extending or customizing pyw, a basic understanding of the de�nitions in netlink_h.py,
genetlink_h.py and if_h.py.

4.2 Input/Output Control (ioctl)

PyRIC provides more than just iw-related functions, it also implements functions from ifcon�g and
iwcon�g. These command line tools still use ioctl (or the proc directory). For example, interfaces()
reads from '/proc/net/dev' to retrieve all system interfaces and winterfaces() use ioctl to check if
a device is wireless. Input/Output control calls have only been used when there was no viable
alternative and, it should not be necessary to have to add any further ioctl commands. If you �nd
that you need an ioctl related command, search through if_h.py for the appropriate structure and
add it's de�nitions to ifreq.

10

4.3 Netlink and nl80211

Documentation on Netlink, and nl80211 in particular, is so minimal as to be neglible. The clus-
terfuck of code and lack of comments in the iw source tree make it impossible to use as any sort
of roadmap. Fortunately Thomas Graf's site[2] has excellent coverage of libnl, the Netlink library.
Using this as a reference, a simple Netlink parser was put together which later became libnl.py.
Using the command line tool strace and libnl.py, Netlink messages could be dissected and analyzed.

Let us consider adding a virtual interface with the command:

sudo iw phy0 interface add test0 type monitor

First, we need to see what is going on under the covers. Using strace:

strace -f -x -s 4096 iw phy0 interface add test0 type monitor

from a terminal will give a you a lot of output, most irrelevant (to us). Scroll through this until the
netlink socket creation as highlighted in Figure 1. You can see that a socket of type PF_NETLINK
is created and the send/receive bu�ers are set to 32768.

Figure 1: Netlink socket creation

What we want to analyze are the messages sent and received over the netlink socket. In Figure 1,
iw is requesting the family id for nl80211. This id will be used in subsequent requests related to
nl80211 as we will see shortly. The return message gives the nl80211 family id as 26 and returns
other nl80211 attributes. This is handled by the private function _familyid_ in pyw.py.
Figure 2 shows the add interface message being sent to the kernel.

11

Figure 2: Netlink sendmsg

We are interested in the byte sequence following msg_iov(1). Copy this and paste into in a python
variable as in Listing 7 and pass it to the function nlmsg_fromstream which parses the byte stream
and returns the GENLMsg.

>>> from pyr i c . l i b import l i b n l as n l
>>> sent = "\x30\x00\x00\x00\x1a . . . \ x00\x00"
>>> msg = nl . nlmsg_fromstream (sent)
>>> msg
nlmsghdr (l en=48, type=26, f l a g s =5, seq =1463268720 , pid=10982)
genlmsghdr (cmd=7)
a t t r i b u t e s :

0 : type=1, datatype=3
value=0
1 : type=4, datatype=5
value=t e s t 0
2 : type=5, datatype=3
value=6

Listing 7: Parsing netlink messages

The �rst thing to notice is nlmsghdr type = 26, which of course is nl80211 family id. The rest of
the nlmsghdr components len, �ags, seq, and pid are handled by libnl.py although you can supply
your own �ags if desired. At this time, you can manually look up what values the cmd, type and
datatype correspond to in nl80211_h.py and netlink_h.py or you can use the tools provided in
nlhelp.py.

>>> from pyr i c . net . netl ink_h import NLA_DATATYPES
>>> from pyr i c . docs import n lhe lp
>>> nlhe lp . cmdbynum(7)
u '@NL80211_CMD_NEW_INTERFACE'
>>>
>>> fo r a t t r in msg . a t t r s :
. . . p r i n t n lhe lp . attrbynum (a t t r [0]) , NLA_DATATYPES[a t t r [2]] , a t t r [1]

12

. . .
@NL80211_ATTR_WIPHY u32 0
@NL80211_ATTR_IFNAME s t r i n g t e s t 0
@NL80211_ATTR_IFTYPE u32 6
>>>
>>> from pyr i c . net . w i r e l e s s . nl80211_h import NL80211_IFTYPES
>>> NL80211_IFTYPES [6]
' monitor '

Listing 8: Parsing netlink messages continued

In Listing 8 command number 7 corresponds to NL80211_CMD_NEW_INTERFACE and the at-
tributes that need to be passed to the kernel are NL80211_ATTR_WIPHY, NL80211_ATTR_IFNAME
and NL80211_ATTR_IFTYPE. The IFTYPE is also known as the mode i.e. 'monitor' which can
be found in nl80211_h.py NL80211_IFTYPES. We don't parse the return message from the kernel
but, it follows the same SOP. In this case, it returns the attributes of the new virtual interface.

With this information, we can now code our function. Recall the fcttemplate as de�ned in Listing
2 and �ll in the command execution as shown in Listing 9.

cons t ruc t the message
msg = nl . nlmsg_new(nl type=_familyid_ (n l sock) ,

cmd=nl80211h .NL80211_CMD_NEW_INTERFACE,
f l a g s=nlh .NLM_F_REQUEST | nlh .NLM_F_ACK)

nl . nla_put_u32 (msg , card . phy , nl80211h .NL80211_ATTR_WIPHY)
nl . nla_put_string (msg , vdev , nl80211h .NL80211_ATTR_IFNAME)
nl . nla_put_u32 (msg , IFTYPES . index (mode) , nl80211h .NL80211_ATTR_IFTYPE)

send , r e c e i v e and parse re turn r e s u l t s , r e tu rn ing the new Card
n l . nl_sendmsg (nlsock ,msg)
rmsg = nl . nl_recvmsg (n l sock) # suc c e s s r e tu rn s new dev i ce a t t r i b u t e s
re turn Card (card . phy , vdev , n l . n la_f ind (rmsg , nl80211h .NL80211_ATTR_IFINDEX))

Listing 9: Coding the function

We construct a new GENLMsg passing the nl80211 family id, the command we got earlier and �ags
specifying that this is a request and we want to get an ACK back5. Now, add each attribute to
the message. Note the order: value, then attribute. With the message constructed, send it to the
kernel, get the results, parse and return them.

Rather simple, in fact the hardest part is �guring out what to send to the kernel. Everything else
is handled behind the scenes by libnl.py.

Appendix A API: pyw.py

A.1 Constants

• _FAM80211ID_: Global netlink family id of nl80211. Do not touch

• IFTYPES: rede�ned (from nl80211_h.py) interface modes

5libnl.py always forces an ACK and handles the underlying process of receiving it

13

• MNTRFLAGS: rede�ned (from nl80211_h.py) monitor mode �ags

• TXPOWERSETTINGS: rede�ned (from nl80211_h.py) power level settings

A.2 Objects/Classes

Card A wrapper around a tuple t = (physical index,device name,interface index) which
exposes the following properties through '.':

• phy: physical index

• dev: device name

• idx: interface index (i�ndex)

Because the underlying Netlink calls will sometimes require the physical index, sometimes the de-
vice name, and sometimes the i�ndex, pyw functions accept a Card, object. This allows callers to
use pyw functions without having to remember which identi�er the function requires. However, in
some cases the function requires a dev or accepts both. See the next section on functions.

While callers could create their own Cards, it is recommend to use one of the following

• pyw.getcard returns a Card object from a given dev

• pyw.devinfo returns the dict info where info['card'] is the Card object. This function will
take either a card or a dev

• pyw.devadd returns a new Card object

• pyw.devadd returns a new Card object

• pyw.ifaces returns a list of tuples t = (Card,mode) sharing the same phy as a given device
to do so. It is also recommended to periodically validate the Card. On some cheaper usb
wireless nics, there are periodic disconnects which results in a new phy and i�ndex.

A.3 Functions

• interfaces(): (ifcon�g), type: �lesystem, returns list of all network device names

• isinterface(dev): (ifcon�g <dev>) type: �lesystem, checks that dev is a device name

• winterfaces(iosock=None): (iwcon�g), type: ioctl, list wireless device names

• iswireless(dev,iosock=None): (iwcon�g <dev>), type: ioctl, check dev is a wireless interface

• phylist(): (iw phy | grep wiphy) type: N/A, list phy indexes and phy names present on system

• regget(nlsock=None: (iw reg get), type: netlink, get regulatory domain

• regset(rd,nlsock=None): (iw reg set <rd>), type: netlink, set regulatory domain to rd

• getcard(dev,nlsock=None) (N/A), type: hybrid netlink and ioctl: get a Card object for dev

• validcard(card,nlsock=None): (N/A), type: (hyrbrid netlink and ioctl), verify card is still
valid

14

• macget(card,iosock=None): (ifcon�g), type: ioctl, determine if card is up or down

• macset(card,mac,iosock=None): (ifcon�g card.<dev> hw ether <mac>), type: ioctl, set
card's hw address to mac

• isup(card,iosock=None): (ifcon�g card.<dev>)

• up(card,iosock=None) (ifcon�g card.<dev> up), type: ioctl, bring card up

• down(card,iosock=None): (ifcon�g card.<dev> down), type: ioctl, bring card down

• isblocked(card): (rfkill list <rfkill_idx>): type N/A returns tuple (Soft Block State, Hard
Block State)

• block(card): (rfkill block <rfkill_idx>) type: N/A, soft blocks card

• unblock(card): (rfkill unblock <rfkill_idx>) type: N/A, removes the soft block on card

• pwrsaveget(card,nlsock=None) (iw dev card.<dev> get power_save) type: netlink get card's
power save state True = on, False = o�

• pwrsaveset(card,on,nlsock=None) (iw dev card.<dev> set power_save <on>) type: netlink,
set card's power save state True = on, False = o�

• covclassget(card,nlsock=None) (iw phy card.<phy> get coverage <cc>) type: netlink get
card's coverage class

• covclassset(card,cc,nlsock=None) (iw phy card.<phy> set coverage <cc>) type: netlink set
card's coverage class

• retryshortget(card,nlsock=None) (iw phy card.<phy> info | grep 'retry short') type:netlink
get card's retry short limit

• retryshortset(card,lim,nlsock=None) (iw phy card.<phy> set retry short <lim>) type:netlink
set card's retry short limit. NOTE: although 255 is speci�ed as the max limit for this and the
long retry, kernel v4 will not allow it.

• retrylongget(card,nlsock=None) (iw phy card.<phy> info | grep 'retry long') type:netlink get
card's retry long limit

• retrylongset(card,lim,nlsock=None) (iw phy card.<phy> set retry long <lim>) type:netlink
set card's retry long limit

• rtsthreshget(card,nlsock=None) (iw phy card.<phy> info | grep rts) type: netlink set card's
RTS threshold

• rtsthreshset(card,thresh,nlsock=None) (iw phy card.<phy> set rts <thresh>) type: netlink
set card's RTS threshold

• fragthreshget(card,nlsock=None) (iw phy card.<phy> info | grep frag) type: netlink get card's
fragmentation threshold

• fragthreshset(card,thresh,nlsock=None) (iw phy card.<phy> set frag <thresh>) type: netlink
set card's fragmentation threshold

15

• ifaddrget(card,iosock=None): (ifcon�g card.<dev>), type: ioctl, get ip4 address, netmask
and broadcast address of card

• ifaddrset(card,ipaddr,netmask,broadcast,iosock=None): (ifcon�g card/<dev> <ipaddr> net-
mask <netmask> broadcast <broadcast>), type: ioctl, set the interface addresses of the
card

• inetset(card,ipaddr,iosock=None): (ifcon�g card.<dev> <ipaddr>), type: ioctl, set the card's
ip4 address

• maskset(card,netmask,iosock=None): (ifcon�g card.<dev> netmask <netmask>), type: ioctl,
set the card's netmask

• bcastset(card,broadcast,iosock=None): (ifcon�g card.<dev> broadcast <broadcast>), type:
ioctl, set the card's broadcast address

• devfreqs(card,nlsock=None): (iw phy card.phy info), type: netlink, get card's supported fre-
quencies

• devchs(card,nlsock=None): (iw phy card.phy info), type: netlink, get card's supported chan-
nels

• devstds(card,nlsock=None): (iwcon�g card.<dev> | grep IEEE), type: nlsock, returns a list
of card's 802.11 supported standards by letter designator

• devmodes(card,nlsock=None): (iw phy card.phy info | grep interface), type: netlink, get card's
supported modes

• devcmds(card,nlsock=None): (iw phy card.phy info | grep commands), type: netlink, get
card's supported commands

• i�nfo(card,iosock=None): (ifcon�g card.<dev>), type: ioctl, get hardware related info for
card

• devinfo(card,nlsock=None): (iw dev card.<dev> info), type: netlink, get info for dev

• phyinfo(card,nlsock=None): (iw phy card.<phy> info), type: netlink, get info for phy

• ifaces(card,nlsock=None): (APX iw card.dev | grep phy#), type: netlink, get all cards (w/
modes) of interfaces sharing the same phy as card

• txset(card,pwr,lvl,nlsock=None) (iw phy phy0 set txpower <lvl> <pwr>), type: netlink,sets
the tx power to pwr (in dBm) with level setting lvl

• txget(card,iosock=None): (iwcon�g card.<dev> | grep Tx-Power card), type: ioctl, get card's
transmission power

• chget(card,nlsock=None): (iw dev <card.dev> info | grep channel), type: netlink, get card's
current channel

• chset(card,ch,chw=None,nlsock=None): iw phy <card.phy> set channel <ch> <chw>), type:
netlink, set card's current channel to ch with width chw

• freqget(card,nlsock=None): (iw dev <card.dev> info | grep channel), type: netlink, get card's
current frequency

16

• freqset(card,rf,chw=None,nlsock=None): iw phy <card.phy> set freq <rf> <chw>), type:
netlink, set card's current frequency to rf with width chw

• devmodes(card,iosock=None): (iw phy card.<phy>), type: netlink, get modes supported by
card

• modeset(card,mode,�ags=None,nlsock=None): (iw dev card.<dev> set type <mode> [�ags]),
type: netlink, set card's mode to mode with �ags (if mode is monitor)

• modeget(card,nlsock=None): (iw dev card.<dev> info | grep mode), type: netlink, get card's
mode

• devset(card,ndev,nlsock=None): (N/A) sets the dev (name) of card to ndev

• phyadd(phy,vnic,mode,�ags=None,nlsock=None): (iw phy <phy> interface add <vnic> type
<mode> �ags <�ags>)6, type: netlink, creates a new virtual interface with dev vdev, in mode
and using �ags. Note: �ags are only supported when creating a monitor mode

• devadd(card (or i�ndex),vnic,mode,[�ags],nlsock=None): (iw phy card.<dev> interface add
<vnic> type <mode> �ags <�ags>), type: netlink, creates a new virtual interface with dev
vdev, in mode and using �ags. Note: �ags are only supported when creating a monitor mode.
This function accepts either a Card object or a i�ndex.

• devdel(card,nlsock=None): (iw card.<dev> del), type: netlink, deletes card

� isconnected(card,nlsock=None): (iw dev card.<dev> info | grep channel), type: netlink,
determines if card is connected

� connect(card,ssid,bssid=None,rf=None,nlsock=None): (iw dev card.<dev> connect <ssid>
<rf> <bssid>) connects to AP SSID with BSSID

� disconnect(card, nlsock=None): (iw dev card.<dev> disconnect), type: netlink, discon-
nects card from AP

� link(card, nlsock=None): (iw dev card.<dev> link), type: netlink, displays link speci�c
details, i.e. AP details that card is connected to

� stainfo(card, mac, nlsock=None): (iw dev card.<dev> link) type: netlink, displays tx,
rx metrics of the AP that card is connected to

� _hex2mac_(v): returns a ':' separated mac address from byte stream v

� _mac2hex_(v): returns a hex string corresponding to mac address v

� _hex2ip4_(v): returns a '.' separated ip4 address from byte stream v

� _validip4_(addr): determines if addr is a valid ip4 address

� _validmac_(addr): determines if addr is a valid mac address

� _issetf_(�ags,�ag): determines if �ag is set in �ags

� _setf_(�ags,�ag): set �ag in �ags to on

� _unsetf_(�ags,�ag): set �ag in �ags to o�

� _familyid_(nlsock): returns and sets the Netlink family id for nl80211, only called once
per module import

6There is a bug in some kernel v4.4.0-x where the given dev name is ignored and a system chosen one is used
instead. See https://wraithwireless.wordpress.com. Whenever possible, use devadd to create interfaces instead.

17

� _i�ndex_(dev,iosock=None): returns dev's i�ndex

� _�agsget_(dev,iosock=None): get's the dev's interface �ags

� _�agsset_(dev,�ags,iosock=None): set's the dev's interface �ags

� _iftypes_(i): returns the mode corresponding to i

� _bands_(band): futher parses band attribute returns dict of bands containting rf infor-
mation and rate information

� _band_rates_(rs): extracts list of rates from the unpacked rates rs

� _band_rfs_(rfs): extracts list of RFs (and other data) from the unpacked frequencies
rfs

� _unparsed_rfs_(band): (legacy) returns a list of frequencies from the unparsed byte
string band

� _commands_(command): converts the list of numeric commands to a list of commands
as strings

� _ciphers_(cipher): returns a list of ciphers from the packed byte string cipher

� _rateinfo_(ri): returns parsed rate info from the packed byte string ri

� _iostub_(fct,*argv): ioctl stub function, calls fct with parameter list argv and an allo-
cated ioctl socket

� _nlstub_(fct,*argv): netlink stub function, calls fct with parameter list argv and an
allocated netlink socket

Appendix B API: channels.py

Channel, Frequency enumeration and conversions can be found in channels.py.

B.1 Constants

1. CHTYPES: imported channel types from nl80211_h

2. CHWIDTHS: imported channel widths from nl80211_h

3. ISM_24_C2F: Dict containing ISM channel (key) to frequency (value) pairs

4. ISM_24_F2C: Dict containing ISM frequency (key) to channel (value) pairs

5. UNII_5_C2F: Dict containing UNII 5Ghz channel (key) to frequency (value) pairs

6. UNII_5_F2C: Dict containing UNII 5Ghz frequency (key) to channel (value) pairs

7. UNII_4_C2F: Dict containing UNII upper 4Ghz channel (key) to frequency (value) pairs

8. UNII_4_F2C: Dict containing UNII upper 4Ghz frequency (key) to channel (value) pairs

B.2 Functions

1. channels(): returns a list of all channels

2. freqs(): returns a list of all frequencies

3. ch2rf(c): convert channel c to frequency

4. rf2ch(f): convert frequency f to channel

18

Appendix C API: hardware.py

Hardware related: driver, chipset, manufacturer and mac address utility functions can be found in
device.py.

C.1 Constants

1. dpath: path to system device details

2. drvpath: path to device drivers

C.2 Functions

1. oui(mac): returns the oui portion of address <mac>

2. ulm(mac): returns the ulm portion of address <mac>

3. manufacturer(ouis,mac): returns the manufacturer name of <mac> given the dict of <ouis>

4. randhw([ouis]): returns a random mac address. If the dict ouis is speci�ed will select a random
oui from the dict otherwise will generate one

5. ifcard(dev): returns the device driver and chipset

6. ifdriver(dev): returns the device driver

7. ifchipset(driver): returns the chipset associated with driver

Appendix D API: ouifetch.py

The �le ouifetch.py retrieves and saves a tab seperated �le of oui to manufacturer name for use by
hardware.py functions. From a command line, type:

D.1 Constants

1. OUIURL: url of IEEE oui �le

2. OUIPATH: path to default location PyRIC oui.txt �le

D.2 Functions

1. load([opath]): returns a dict of oui:manufacturer key->value pairs stored in the text �le at
opath. If opath is not speci�ed, uses the default

2. fetch([opath]): retrieves oui.txt from the IEEE website, parses the �les and stores the results
in a PyRIC friendly format in opath. If opath is not speci�ed, uses the default. User must
have root permissions in order to write to default opath

Appendix E API: rfkill.py

A port of the command line tool rfkill, rfkill.py writes and reads rfkill_event structures to /dev/rfkill
using fcntl providing functionality to block and unblock devices.

19

E.1 Constants

1. RFKILL_STATE: list of boolean values corresponding to blocked, unblocked

E.2 Functions

1. rfkill_list(): corresponds to rkill list, returns a dict of dicts name -> {idx, type, soft, hard}.
If type is 'wireless', then name will be of the form phy<n> such that n is the physical index
of the wireless card

2. rfkill_block(idx): soft blocks the device at rfkill index idx

3. rfkill_blockby(rtype): soft blocks all devices of type rtype

4. rfkill_unblock(idx): turns o� the soft block at rfkill index idx

5. rfkill_unblockby(rtype): turns o� the soft blocks of all devices of type rtype

6. soft_blockedidx: determines soft block state of device at rfkill index idx

7. hard_blockedidx: determines hard block state of device at rfkill index idx

8. getidx(phy): returns the rfkill index of the device with physical index phy

9. getname(idx): returns the name of the device at rfkill index idx

10. gettype(idx): returns the type of the device at rfkill index idx

Appendix F API: libnl.py

Providing libnl similar functionality, libnl.py provides the interface between pyw and the underlying
nl80211 core. It relates similarily to libnl by providing functions handling netlink messages and
sockets and where possible uses similarly named functions as those libnl to ease any transitions
from C to PyRIC. However, several liberties have been taken as libnl.py handles only nl80211
generic netlink messages.

F.1 Constants

• BUFSZ default rx and tx bu�er size

F.2 Classes/Objects

The two classes in libnl.py, NLSocket and GENLMsg, discussed in the following sections subclass
Python's builtin dict. This has been done IOT to take advantage of dict's already existing functions
and primarily their mutability and Python's 'pass by name' i.e. modi�cations in a function will be
re�ected in the caller. This makes the classes very similar to the use C pointers to structs in libnl.

20

F.2.1 NLSocket

NLSocket is a wrapper around a netlink socket which exposes the following properties through '.':

• sock: the actual socket

• fd: the socket's �le descriptor (deprecated)

• tx: size of the send bu�er

• rx: size of the receive bu�er

• pid: port id

• grpm: group mask

• seq: sequence number

• timeout: socket timeout

and has the following methods:

• incr(): increment sequence number

• send(pkt): sends pkt returning bytes sent

• recv(): returns received message (will block unless timeout is set)

• close(): close the socket

NLSockets are created with nl_socket_alloc and must be freed with nl_socket_free. See Section
F.3.

F.2.2 GENLMsg

GENLMsg is a wrapper around a dict with the following key->value pairs:

• len: total message length including the header

• nltype: netlink type

• �ags: message �ags

• seq: seq. #

• pid: port id

• cmd: generic netlink command

• attrs: list of message attributes. Each attribute is a tuple t = (attribute,value,datatype)
where:

� attribute: netlink attribute type i.e. CTRL_ATTR_FAMILY_ID

� value: the unpacked attribute value

� datatype: datatype of the attribute as de�ned in nelink_h i.e. NLA_U8

21

NOTE: as discussed below, on sending, the seq. # and port id are overridden with values of the
netlink socket.

GENLMsg exposes the following properties:

• len: length of the message (get only)

• vers: returns 1 (default version) (get only)

• nltype: message content i.e. generic or nl80211 (get or set)

• �ags: message �ags (get or set)

• seq: current sequence # (get or set)

• pid: port id (get or set)

• cmd: netlink command (get or set)

• attrs: attribute list (get only)

• numattrs: number of attributes (get only)

GENLMsg has the following methods:

• __repr__(): returns a string representation useful for debugging

• tostream(): returns a packed netlink message

There are two methods of creating a GENLMsg. Create a new message (to send) with
nlmsg_new and create a message from a received packet with nlmsg_fromstream. These
are discussed below.

F.3 Functions

� Netlink Socket Related

∗ nl_socket_alloc(pid,grps,seq,rx,tx,timeout): creates a netlink socket with port id =
pid, group mask = grps, initial seq. # = seq, send and receive bu�er size = tx and
rx respectively and blocking timeout = timeout

∗ nl_socket_free(sock): closes the socket

∗ nl_socket_pid(sock): (deprecated for NLSocket.pid) returns the port id

∗ nl_socket_grpmask(sock): (deprecated for NLSocket.grpmask) returns the group
mask

∗ nl_sendmsg(sock,msg,override=False): sends the netlink msg over socket. NOTE:
NLSockets will automatically set the port id and seq. # regardless of their value in
the message. If override is True, the message's pid and seq. # will be used instead.

∗ nl_recvmsg(sock): returns a GENLMsg or blocks unless the socket's timeout is set.
Should only be called once per every nl_sendmsg.

� Netlink Message Related

∗ nlmsg_new(nltype=None,cmd=None,pid=None,�ags=None,attrs=None): creates a
new GENLMsg with zero or more attributes de�ned.

22

∗ nlmsg_fromstream(stream): parses the message in stream returning the correspond-
ing GENLMsg

∗ nla_parse(msg,l,mtype,stream,idx): parses the attributes in stream appending them
to the attribute list of message where msg = the GENLMsg, l = the total length of
the message, mtype = the message content (i.e. netlink type) stream is the original
byte stream and idx is the index of the start of the attribute list

∗ nla_parse_nested(nested): returns the list of packed nested attributes extracted
from the stream nested. Callers must unpack and parse the returned attributes
themselves

∗ nla_put(msg,v,a,t): appends the attribute a, with value v and datatype t to the
msg's attribute list

∗ nla_put_<DATATYPE>(msg,v,a): eight specialized functions that append attribute
a with the value v and type <DATATYPE> to msg's attribute list

∗ nla_putat(msg,i,v,a,d): puts attribute a, with value v and datatype d at index i in
msg's attribute list.

∗ nla_pop(msg,i): removes the attribute tuple at index i, returning the popped tuple

∗ nla_�nd(msg,a,value=True): returns the �rst attribute a in msg's attribute list. If
value returns only the value otherwise returns the attribute tuple

∗ nla_get(msg,i,value=True): returns the attribute at index i. If value returns only
the value otherwise returns the attribute tuple

∗ _nla_strip(v): (private) strips padding bytes from the end of v

∗ _attrpack(a,v,d): (private) packs the attribute tuple

� _maxbufsz_(): (private) returns the maximum allowable socket bu�er size

Appendix G API: libio.py

A very basic interface to ioctl, libio provides socket creation, deletion and transfer.

G.1 Functions

1. io_socket_alloc(): returns an ioctl socket

2. io_socket_free(iosock): closes the ioctl socket iosock

3. io_transfer_(iosock,�ag,ifreq): sends the ifreq structure with sockios control call �ag to the
kernel and returns the received ifreq structure

Appendix H Copyright and License

PYRIC: Python Radio Interface Controller v0.1.6.4

Copyright (C) 2016 Dale V. Patterson (wraith.wireless@yandex.com)

This program is free software: you can redistribute it and/or modify it under the terms of the GNU
General Public License[1] as published by the Free Software Foundation, either version 3 of the
License, or (at your option) any later version.

23

Redistribution and use in source and binary forms, with or without modi�cations, are permitted
provided that the following conditions are met:

• Redistributions of source code must retain the above copyright notice, this list of conditions
and the following disclaimer.

• Redistributions in binary form must reproduce the above copyright notice, this list of condi-
tions and the following disclaimer in the documentation and/or other materials provided with
the distribution.

• Neither the name of the orginal author Dale V. Patterson nor the names of any contributors
may be used to endorse or promote products derived from this software without speci�c prior
written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDER AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIEDWARRANTIES, INCLUDING, BUT NOT LIMITED
TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTIC-
ULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL BE LIABLE FOR ANY DIRECT,
INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (IN-
CLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SER-
VICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LI-
ABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
SUCH DAMAGE.

PyRIC is free software but use, duplication or disclosure by the United States Government is subject
to the restrictions set forth in DFARS 252.227-7014.

Use of this software is governed by all applicable federal, state and local laws of the United States
and subject to the laws of the country where you reside. The copyright owner and contributors
will be not be held liable for use of this software in furtherance of or with intent to commit any
fraudulent or other illegal activities, or otherwise in violation of any applicable law, regulation or
legal agreement.

See http://www.gnu.org/licenses/licenses.html for a copy of the GNU General Public License.

References

[1] Gnu general public license, June 2007.

[2] Graf, T. Netlink library (libnl), May 2011.

[3] Pablo Neira Ayuso, Rafael M. Gasca, L. L. Communicating between the kernel and
user-space in linux using netlink sockets. Software - Practice And Experience 40 (August 2010),
797�810.

[4] Patterson, D. V. Wireless reconnaissance and intelligent target harvesting, April 2016.

24

