Codebase list dnscat2 / 9b31863 client / libs / crypto / micro-ecc / uECC.c
9b31863

Tree @9b31863 (Download .tar.gz)

uECC.c @9b31863raw · history · blame

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
/* Copyright 2014, Kenneth MacKay. Licensed under the BSD 2-clause license. */

#include "uECC.h"
#include "uECC_vli.h"

#ifndef uECC_RNG_MAX_TRIES
    #define uECC_RNG_MAX_TRIES 64
#endif

#if uECC_ENABLE_VLI_API
    #define uECC_VLI_API
#else
    #define uECC_VLI_API static
#endif

#define CONCATX(a, ...) a ## __VA_ARGS__
#define CONCAT(a, ...) CONCATX(a, __VA_ARGS__)

#define STRX(a) #a
#define STR(a) STRX(a)

#define EVAL(...)  EVAL1(EVAL1(EVAL1(EVAL1(__VA_ARGS__))))
#define EVAL1(...) EVAL2(EVAL2(EVAL2(EVAL2(__VA_ARGS__))))
#define EVAL2(...) EVAL3(EVAL3(EVAL3(EVAL3(__VA_ARGS__))))
#define EVAL3(...) EVAL4(EVAL4(EVAL4(EVAL4(__VA_ARGS__))))
#define EVAL4(...) __VA_ARGS__

#define DEC_1  0
#define DEC_2  1
#define DEC_3  2
#define DEC_4  3
#define DEC_5  4
#define DEC_6  5
#define DEC_7  6
#define DEC_8  7
#define DEC_9  8
#define DEC_10 9
#define DEC_11 10
#define DEC_12 11
#define DEC_13 12
#define DEC_14 13
#define DEC_15 14
#define DEC_16 15
#define DEC_17 16
#define DEC_18 17
#define DEC_19 18
#define DEC_20 19
#define DEC_21 20
#define DEC_22 21
#define DEC_23 22
#define DEC_24 23
#define DEC_25 24
#define DEC_26 25
#define DEC_27 26
#define DEC_28 27
#define DEC_29 28
#define DEC_30 29
#define DEC_31 30
#define DEC_32 31

#define DEC(N) CONCAT(DEC_, N)

#define SECOND_ARG(_, val, ...) val
#define SOME_CHECK_0 ~, 0
#define GET_SECOND_ARG(...) SECOND_ARG(__VA_ARGS__, SOME,)
#define SOME_OR_0(N) GET_SECOND_ARG(CONCAT(SOME_CHECK_, N))

#define EMPTY(...)
#define DEFER(...) __VA_ARGS__ EMPTY()

#define REPEAT_NAME_0() REPEAT_0
#define REPEAT_NAME_SOME() REPEAT_SOME
#define REPEAT_0(...)
#define REPEAT_SOME(N, stuff) DEFER(CONCAT(REPEAT_NAME_, SOME_OR_0(DEC(N))))()(DEC(N), stuff) stuff
#define REPEAT(N, stuff) EVAL(REPEAT_SOME(N, stuff))

#define REPEATM_NAME_0() REPEATM_0
#define REPEATM_NAME_SOME() REPEATM_SOME
#define REPEATM_0(...)
#define REPEATM_SOME(N, macro) macro(N) \
    DEFER(CONCAT(REPEATM_NAME_, SOME_OR_0(DEC(N))))()(DEC(N), macro)
#define REPEATM(N, macro) EVAL(REPEATM_SOME(N, macro))

#include "platform-specific.inc"

#if (uECC_WORD_SIZE == 1)
    #if uECC_SUPPORTS_secp160r1
        #define uECC_MAX_WORDS 21 /* Due to the size of curve_n. */
    #endif
    #if uECC_SUPPORTS_secp192r1
        #undef uECC_MAX_WORDS
        #define uECC_MAX_WORDS 24
    #endif
    #if uECC_SUPPORTS_secp224r1
        #undef uECC_MAX_WORDS
        #define uECC_MAX_WORDS 28
    #endif
    #if (uECC_SUPPORTS_secp256r1 || uECC_SUPPORTS_secp256k1)
        #undef uECC_MAX_WORDS
        #define uECC_MAX_WORDS 32
    #endif
#elif (uECC_WORD_SIZE == 4)
    #if uECC_SUPPORTS_secp160r1
        #define uECC_MAX_WORDS 6 /* Due to the size of curve_n. */
    #endif
    #if uECC_SUPPORTS_secp192r1
        #undef uECC_MAX_WORDS
        #define uECC_MAX_WORDS 6
    #endif
    #if uECC_SUPPORTS_secp224r1
        #undef uECC_MAX_WORDS
        #define uECC_MAX_WORDS 7
    #endif
    #if (uECC_SUPPORTS_secp256r1 || uECC_SUPPORTS_secp256k1)
        #undef uECC_MAX_WORDS
        #define uECC_MAX_WORDS 8
    #endif
#elif (uECC_WORD_SIZE == 8)
    #if uECC_SUPPORTS_secp160r1
        #define uECC_MAX_WORDS 3
    #endif
    #if uECC_SUPPORTS_secp192r1
        #undef uECC_MAX_WORDS
        #define uECC_MAX_WORDS 3
    #endif
    #if uECC_SUPPORTS_secp224r1
        #undef uECC_MAX_WORDS
        #define uECC_MAX_WORDS 4
    #endif
    #if (uECC_SUPPORTS_secp256r1 || uECC_SUPPORTS_secp256k1)
        #undef uECC_MAX_WORDS
        #define uECC_MAX_WORDS 4
    #endif
#endif /* uECC_WORD_SIZE */

#define BITS_TO_WORDS(num_bits) ((num_bits + ((uECC_WORD_SIZE * 8) - 1)) / (uECC_WORD_SIZE * 8))
#define BITS_TO_BYTES(num_bits) ((num_bits + 7) / 8)

struct uECC_Curve_t {
    wordcount_t num_words;
    wordcount_t num_bytes;
    bitcount_t num_n_bits;
    uECC_word_t p[uECC_MAX_WORDS];
    uECC_word_t n[uECC_MAX_WORDS];
    uECC_word_t G[uECC_MAX_WORDS * 2];
    uECC_word_t b[uECC_MAX_WORDS];
    void (*double_jacobian)(uECC_word_t * X1,
                            uECC_word_t * Y1,
                            uECC_word_t * Z1,
                            uECC_Curve curve);
#if uECC_SUPPORT_COMPRESSED_POINT
    void (*mod_sqrt)(uECC_word_t *a, uECC_Curve curve);
#endif
    void (*x_side)(uECC_word_t *result, const uECC_word_t *x, uECC_Curve curve);
#if (uECC_OPTIMIZATION_LEVEL > 0)
    void (*mmod_fast)(uECC_word_t *result, uECC_word_t *product);
#endif
};

static cmpresult_t uECC_vli_cmp_unsafe(const uECC_word_t *left,
                                       const uECC_word_t *right,
                                       wordcount_t num_words);

#if (uECC_PLATFORM == uECC_arm || uECC_PLATFORM == uECC_arm_thumb || \
        uECC_PLATFORM == uECC_arm_thumb2)
    #include "asm_arm.inc"
#endif

#if (uECC_PLATFORM == uECC_avr)
    #include "asm_avr.inc"
#endif

#if default_RNG_defined
static uECC_RNG_Function g_rng_function = &default_RNG;
#else 
static uECC_RNG_Function g_rng_function = 0;
#endif

void uECC_set_rng(uECC_RNG_Function rng_function) {
    g_rng_function = rng_function;
}

#if !asm_clear
uECC_VLI_API void uECC_vli_clear(uECC_word_t *vli, wordcount_t num_words) {
    wordcount_t i;
    for (i = 0; i < num_words; ++i) {
        vli[i] = 0;
    }
}
#endif /* !asm_clear */

/* Constant-time comparison to zero - secure way to compare long integers */
/* Returns 1 if vli == 0, 0 otherwise. */
uECC_VLI_API uECC_word_t uECC_vli_isZero(const uECC_word_t *vli, wordcount_t num_words) {
    uECC_word_t bits = 0;
    wordcount_t i;
    for (i = 0; i < num_words; ++i) {
        bits |= vli[i];
    }
    return (bits == 0);
}

/* Returns nonzero if bit 'bit' of vli is set. */
uECC_VLI_API uECC_word_t uECC_vli_testBit(const uECC_word_t *vli, bitcount_t bit) {
    return (vli[bit >> uECC_WORD_BITS_SHIFT] & ((uECC_word_t)1 << (bit & uECC_WORD_BITS_MASK)));
}

/* Counts the number of words in vli. */
static wordcount_t vli_numDigits(const uECC_word_t *vli, const wordcount_t max_words) {
    wordcount_t i;
    /* Search from the end until we find a non-zero digit.
       We do it in reverse because we expect that most digits will be nonzero. */
    for (i = max_words - 1; i >= 0 && vli[i] == 0; --i) {
    }

    return (i + 1);
}

/* Counts the number of bits required to represent vli. */
uECC_VLI_API bitcount_t uECC_vli_numBits(const uECC_word_t *vli, const wordcount_t max_words) {
    uECC_word_t i;
    uECC_word_t digit;

    wordcount_t num_digits = vli_numDigits(vli, max_words);
    if (num_digits == 0) {
        return 0;
    }

    digit = vli[num_digits - 1];
    for (i = 0; digit; ++i) {
        digit >>= 1;
    }

    return (((bitcount_t)(num_digits - 1) << uECC_WORD_BITS_SHIFT) + i);
}

/* Sets dest = src. */
#if !asm_set
uECC_VLI_API void uECC_vli_set(uECC_word_t *dest, const uECC_word_t *src, wordcount_t num_words) {
    wordcount_t i;
    for (i = 0; i < num_words; ++i) {
        dest[i] = src[i];
    }
}
#endif /* !asm_set */

/* Returns sign of left - right. */
static cmpresult_t uECC_vli_cmp_unsafe(const uECC_word_t *left,
                                       const uECC_word_t *right,
                                       wordcount_t num_words) {
    wordcount_t i;
    for (i = num_words - 1; i >= 0; --i) {
        if (left[i] > right[i]) {
            return 1;
        } else if (left[i] < right[i]) {
            return -1;
        }
    }
    return 0;
}

/* Constant-time comparison function - secure way to compare long integers */
/* Returns one if left == right, zero otherwise. */
uECC_VLI_API uECC_word_t uECC_vli_equal(const uECC_word_t *left,
                                        const uECC_word_t *right,
                                        wordcount_t num_words) {
    uECC_word_t diff = 0;
    wordcount_t i;
    for (i = num_words - 1; i >= 0; --i) {
        diff |= (left[i] ^ right[i]);
    }
    return (diff == 0);
}

uECC_VLI_API uECC_word_t uECC_vli_sub(uECC_word_t *result,
                                      const uECC_word_t *left,
                                      const uECC_word_t *right,
                                      wordcount_t num_words);

/* Returns sign of left - right, in constant time. */
uECC_VLI_API cmpresult_t uECC_vli_cmp(const uECC_word_t *left,
                                      const uECC_word_t *right,
                                      wordcount_t num_words) {
    uECC_word_t tmp[uECC_MAX_WORDS];
    uECC_word_t neg = !!uECC_vli_sub(tmp, left, right, num_words);
    uECC_word_t equal = uECC_vli_isZero(tmp, num_words);
    return (!equal - 2 * neg);
}

/* Computes vli = vli >> 1. */
#if !asm_rshift1
uECC_VLI_API void uECC_vli_rshift1(uECC_word_t *vli, wordcount_t num_words) {
    uECC_word_t *end = vli;
    uECC_word_t carry = 0;
    
    vli += num_words;
    while (vli-- > end) {
        uECC_word_t temp = *vli;
        *vli = (temp >> 1) | carry;
        carry = temp << (uECC_WORD_BITS - 1);
    }
}
#endif /* !asm_rshift1 */

/* Computes result = left + right, returning carry. Can modify in place. */
#if !asm_add
uECC_VLI_API uECC_word_t uECC_vli_add(uECC_word_t *result,
                                      const uECC_word_t *left,
                                      const uECC_word_t *right,
                                      wordcount_t num_words) {
    uECC_word_t carry = 0;
    wordcount_t i;
    for (i = 0; i < num_words; ++i) {
        uECC_word_t sum = left[i] + right[i] + carry;
        if (sum != left[i]) {
            carry = (sum < left[i]);
        }
        result[i] = sum;
    }
    return carry;
}
#endif /* !asm_add */

/* Computes result = left - right, returning borrow. Can modify in place. */
#if !asm_sub
uECC_VLI_API uECC_word_t uECC_vli_sub(uECC_word_t *result,
                                      const uECC_word_t *left,
                                      const uECC_word_t *right,
                                      wordcount_t num_words) {
    uECC_word_t borrow = 0;
    wordcount_t i;
    for (i = 0; i < num_words; ++i) {
        uECC_word_t diff = left[i] - right[i] - borrow;
        if (diff != left[i]) {
            borrow = (diff > left[i]);
        }
        result[i] = diff;
    }
    return borrow;
}
#endif /* !asm_sub */

#if !asm_mult || (uECC_SQUARE_FUNC && !asm_square) || \
    (uECC_SUPPORTS_secp256k1 && (uECC_OPTIMIZATION_LEVEL > 0) && \
        ((uECC_WORD_SIZE == 1) || (uECC_WORD_SIZE == 8)))
static void muladd(uECC_word_t a,
                   uECC_word_t b,
                   uECC_word_t *r0,
                   uECC_word_t *r1,
                   uECC_word_t *r2) {
#if uECC_WORD_SIZE == 8 && !SUPPORTS_INT128
    uint64_t a0 = a & 0xffffffffull;
    uint64_t a1 = a >> 32;
    uint64_t b0 = b & 0xffffffffull;
    uint64_t b1 = b >> 32;

    uint64_t i0 = a0 * b0;
    uint64_t i1 = a0 * b1;
    uint64_t i2 = a1 * b0;
    uint64_t i3 = a1 * b1;

    uint64_t p0, p1;

    i2 += (i0 >> 32);
    i2 += i1;
    if (i2 < i1) { /* overflow */
        i3 += 0x100000000ull;
    }

    p0 = (i0 & 0xffffffffull) | (i2 << 32);
    p1 = i3 + (i2 >> 32);

    *r0 += p0;
    *r1 += (p1 + (*r0 < p0));
    *r2 += ((*r1 < p1) || (*r1 == p1 && *r0 < p0));
#else
    uECC_dword_t p = (uECC_dword_t)a * b;
    uECC_dword_t r01 = ((uECC_dword_t)(*r1) << uECC_WORD_BITS) | *r0;
    r01 += p;
    *r2 += (r01 < p);
    *r1 = r01 >> uECC_WORD_BITS;
    *r0 = (uECC_word_t)r01;
#endif
}
#endif /* muladd needed */

#if !asm_mult
uECC_VLI_API void uECC_vli_mult(uECC_word_t *result,
                                const uECC_word_t *left,
                                const uECC_word_t *right,
                                wordcount_t num_words) {
    uECC_word_t r0 = 0;
    uECC_word_t r1 = 0;
    uECC_word_t r2 = 0;
    wordcount_t i, k;

    /* Compute each digit of result in sequence, maintaining the carries. */
    for (k = 0; k < num_words; ++k) {
        for (i = 0; i <= k; ++i) {
            muladd(left[i], right[k - i], &r0, &r1, &r2);
        }
        result[k] = r0;
        r0 = r1;
        r1 = r2;
        r2 = 0;
    }
    for (k = num_words; k < num_words * 2 - 1; ++k) {
        for (i = (k + 1) - num_words; i < num_words; ++i) {
            muladd(left[i], right[k - i], &r0, &r1, &r2);
        }
        result[k] = r0;
        r0 = r1;
        r1 = r2;
        r2 = 0;
    }
    result[num_words * 2 - 1] = r0;
}
#endif /* !asm_mult */

#if uECC_SQUARE_FUNC

#if !asm_square
static void mul2add(uECC_word_t a,
                    uECC_word_t b,
                    uECC_word_t *r0,
                    uECC_word_t *r1,
                    uECC_word_t *r2) {
#if uECC_WORD_SIZE == 8 && !SUPPORTS_INT128
    uint64_t a0 = a & 0xffffffffull;
    uint64_t a1 = a >> 32;
    uint64_t b0 = b & 0xffffffffull;
    uint64_t b1 = b >> 32;

    uint64_t i0 = a0 * b0;
    uint64_t i1 = a0 * b1;
    uint64_t i2 = a1 * b0;
    uint64_t i3 = a1 * b1;

    uint64_t p0, p1;

    i2 += (i0 >> 32);
    i2 += i1;
    if (i2 < i1)
    { /* overflow */
        i3 += 0x100000000ull;
    }

    p0 = (i0 & 0xffffffffull) | (i2 << 32);
    p1 = i3 + (i2 >> 32);

    *r2 += (p1 >> 63);
    p1 = (p1 << 1) | (p0 >> 63);
    p0 <<= 1;

    *r0 += p0;
    *r1 += (p1 + (*r0 < p0));
    *r2 += ((*r1 < p1) || (*r1 == p1 && *r0 < p0));
#else
    uECC_dword_t p = (uECC_dword_t)a * b;
    uECC_dword_t r01 = ((uECC_dword_t)(*r1) << uECC_WORD_BITS) | *r0;
    *r2 += (p >> (uECC_WORD_BITS * 2 - 1));
    p *= 2;
    r01 += p;
    *r2 += (r01 < p);
    *r1 = r01 >> uECC_WORD_BITS;
    *r0 = (uECC_word_t)r01;
#endif
}

uECC_VLI_API void uECC_vli_square(uECC_word_t *result,
                                  const uECC_word_t *left,
                                  wordcount_t num_words) {
    uECC_word_t r0 = 0;
    uECC_word_t r1 = 0;
    uECC_word_t r2 = 0;

    wordcount_t i, k;
    
    for (k = 0; k < num_words * 2 - 1; ++k) {
        uECC_word_t min = (k < num_words ? 0 : (k + 1) - num_words);
        for (i = min; i <= k && i <= k - i; ++i) {
            if (i < k-i) {
                mul2add(left[i], left[k - i], &r0, &r1, &r2);
            } else {
                muladd(left[i], left[k - i], &r0, &r1, &r2);
            }
        }
        result[k] = r0;
        r0 = r1;
        r1 = r2;
        r2 = 0;
    }
    
    result[num_words * 2 - 1] = r0;
}
#endif /* !asm_square */

#else /* uECC_SQUARE_FUNC */

#if uECC_ENABLE_VLI_API
uECC_VLI_API void uECC_vli_square(uECC_word_t *result,
                                  const uECC_word_t *left,
                                  wordcount_t num_words) {
    uECC_vli_mult(result, left, left, num_words);
}
#endif /* uECC_ENABLE_VLI_API */
    
#endif /* uECC_SQUARE_FUNC */

/* Computes result = (left + right) % mod.
   Assumes that left < mod and right < mod, and that result does not overlap mod. */
uECC_VLI_API void uECC_vli_modAdd(uECC_word_t *result,
                                  const uECC_word_t *left,
                                  const uECC_word_t *right,
                                  const uECC_word_t *mod,
                                  wordcount_t num_words) {
    uECC_word_t carry = uECC_vli_add(result, left, right, num_words);
    if (carry || uECC_vli_cmp_unsafe(mod, result, num_words) != 1) {
        /* result > mod (result = mod + remainder), so subtract mod to get remainder. */
        uECC_vli_sub(result, result, mod, num_words);
    }
}

/* Computes result = (left - right) % mod.
   Assumes that left < mod and right < mod, and that result does not overlap mod. */
uECC_VLI_API void uECC_vli_modSub(uECC_word_t *result,
                                  const uECC_word_t *left,
                                  const uECC_word_t *right,
                                  const uECC_word_t *mod,
                                  wordcount_t num_words) {
    uECC_word_t l_borrow = uECC_vli_sub(result, left, right, num_words);
    if (l_borrow) {
        /* In this case, result == -diff == (max int) - diff. Since -x % d == d - x,
           we can get the correct result from result + mod (with overflow). */
        uECC_vli_add(result, result, mod, num_words);
    }
}

/* Computes result = product % mod, where product is 2N words long. */
/* Currently only designed to work for curve_p or curve_n. */
uECC_VLI_API void uECC_vli_mmod(uECC_word_t *result,
                                uECC_word_t *product,
                                const uECC_word_t *mod,
                                wordcount_t num_words) {
    uECC_word_t mod_multiple[2 * uECC_MAX_WORDS];
    uECC_word_t tmp[2 * uECC_MAX_WORDS];
    uECC_word_t *v[2] = {tmp, product};
    uECC_word_t index;
    
    /* Shift mod so its highest set bit is at the maximum position. */
    bitcount_t shift = (num_words * 2 * uECC_WORD_BITS) - uECC_vli_numBits(mod, num_words);
    wordcount_t word_shift = shift / uECC_WORD_BITS;
    wordcount_t bit_shift = shift % uECC_WORD_BITS;
    uECC_word_t carry = 0;
    uECC_vli_clear(mod_multiple, word_shift);
    if (bit_shift > 0) {
        for(index = 0; index < (uECC_word_t)num_words; ++index) {
            mod_multiple[word_shift + index] = (mod[index] << bit_shift) | carry;
            carry = mod[index] >> (uECC_WORD_BITS - bit_shift);
        }
    } else {
        uECC_vli_set(mod_multiple + word_shift, mod, num_words);
    }

    for (index = 1; shift >= 0; --shift) {
        uECC_word_t borrow = 0;
        wordcount_t i;
        for (i = 0; i < num_words * 2; ++i) {
            uECC_word_t diff = v[index][i] - mod_multiple[i] - borrow;
            if (diff != v[index][i]) {
                borrow = (diff > v[index][i]);
            }
            v[1 - index][i] = diff;
        }
        index = !(index ^ borrow); /* Swap the index if there was no borrow */
        uECC_vli_rshift1(mod_multiple, num_words);
        mod_multiple[num_words - 1] |= mod_multiple[num_words] << (uECC_WORD_BITS - 1);
        uECC_vli_rshift1(mod_multiple + num_words, num_words);
    }
    uECC_vli_set(result, v[index], num_words);
}

/* Computes result = (left * right) % mod. */
uECC_VLI_API void uECC_vli_modMult(uECC_word_t *result,
                                   const uECC_word_t *left,
                                   const uECC_word_t *right,
                                   const uECC_word_t *mod,
                                   wordcount_t num_words) {
    uECC_word_t product[2 * uECC_MAX_WORDS];
    uECC_vli_mult(product, left, right, num_words);
    uECC_vli_mmod(result, product, mod, num_words);
}

uECC_VLI_API void uECC_vli_modMult_fast(uECC_word_t *result,
                                        const uECC_word_t *left,
                                        const uECC_word_t *right,
                                        uECC_Curve curve) {
    uECC_word_t product[2 * uECC_MAX_WORDS];
    uECC_vli_mult(product, left, right, curve->num_words);
#if (uECC_OPTIMIZATION_LEVEL > 0)
    curve->mmod_fast(result, product);
#else
    uECC_vli_mmod(result, product, curve->p, curve->num_words);
#endif
}

#if uECC_SQUARE_FUNC

#if uECC_ENABLE_VLI_API
/* Computes result = left^2 % mod. */
uECC_VLI_API void uECC_vli_modSquare(uECC_word_t *result,
                                     const uECC_word_t *left,
                                     const uECC_word_t *mod,
                                     wordcount_t num_words) {
    uECC_word_t product[2 * uECC_MAX_WORDS];
    uECC_vli_square(product, left, num_words);
    uECC_vli_mmod(result, product, mod, num_words);
}
#endif /* uECC_ENABLE_VLI_API */

uECC_VLI_API void uECC_vli_modSquare_fast(uECC_word_t *result,
                                          const uECC_word_t *left,
                                          uECC_Curve curve) {
    uECC_word_t product[2 * uECC_MAX_WORDS];
    uECC_vli_square(product, left, curve->num_words);
#if (uECC_OPTIMIZATION_LEVEL > 0)
    curve->mmod_fast(result, product);
#else
    uECC_vli_mmod(result, product, curve->p, curve->num_words);
#endif
}

#else /* uECC_SQUARE_FUNC */

#if uECC_ENABLE_VLI_API
uECC_VLI_API void uECC_vli_modSquare(uECC_word_t *result,
                                     const uECC_word_t *left,
                                     const uECC_word_t *mod,
                                     wordcount_t num_words) {
    uECC_vli_modMult(result, left, left, mod, num_words);
}
#endif /* uECC_ENABLE_VLI_API */

uECC_VLI_API void uECC_vli_modSquare_fast(uECC_word_t *result,
                                          const uECC_word_t *left,
                                          uECC_Curve curve) {
    uECC_vli_modMult_fast(result, left, left, curve);
}
    
#endif /* uECC_SQUARE_FUNC */

#define EVEN(vli) (!(vli[0] & 1))
static void vli_modInv_update(uECC_word_t *uv,
                              const uECC_word_t *mod,
                              wordcount_t num_words) {
    uECC_word_t carry = 0;
    if (!EVEN(uv)) {
        carry = uECC_vli_add(uv, uv, mod, num_words);
    }
    uECC_vli_rshift1(uv, num_words);
    if (carry) {
        uv[num_words - 1] |= HIGH_BIT_SET;
    }
}

/* Computes result = (1 / input) % mod. All VLIs are the same size.
   See "From Euclid's GCD to Montgomery Multiplication to the Great Divide" */
uECC_VLI_API void uECC_vli_modInv(uECC_word_t *result,
                                  const uECC_word_t *input,
                                  const uECC_word_t *mod,
                                  wordcount_t num_words) {
    uECC_word_t a[uECC_MAX_WORDS], b[uECC_MAX_WORDS], u[uECC_MAX_WORDS], v[uECC_MAX_WORDS];
    cmpresult_t cmpResult;
    
    if (uECC_vli_isZero(input, num_words)) {
        uECC_vli_clear(result, num_words);
        return;
    }

    uECC_vli_set(a, input, num_words);
    uECC_vli_set(b, mod, num_words);
    uECC_vli_clear(u, num_words);
    u[0] = 1;
    uECC_vli_clear(v, num_words);
    while ((cmpResult = uECC_vli_cmp_unsafe(a, b, num_words)) != 0) {
        if (EVEN(a)) {
            uECC_vli_rshift1(a, num_words);
            vli_modInv_update(u, mod, num_words);
        } else if (EVEN(b)) {
            uECC_vli_rshift1(b, num_words);
            vli_modInv_update(v, mod, num_words);
        } else if (cmpResult > 0) {
            uECC_vli_sub(a, a, b, num_words);
            uECC_vli_rshift1(a, num_words);
            if (uECC_vli_cmp_unsafe(u, v, num_words) < 0) {
                uECC_vli_add(u, u, mod, num_words);
            }
            uECC_vli_sub(u, u, v, num_words);
            vli_modInv_update(u, mod, num_words);
        } else {
            uECC_vli_sub(b, b, a, num_words);
            uECC_vli_rshift1(b, num_words);
            if (uECC_vli_cmp_unsafe(v, u, num_words) < 0) {
                uECC_vli_add(v, v, mod, num_words);
            }
            uECC_vli_sub(v, v, u, num_words);
            vli_modInv_update(v, mod, num_words);
        }
    }
    uECC_vli_set(result, u, num_words);
}

/* ------ Point operations ------ */

#include "curve-specific.inc"

/* Returns 1 if 'point' is the point at infinity, 0 otherwise. */
#define EccPoint_isZero(point, curve) uECC_vli_isZero((point), (curve)->num_words * 2)

/* Point multiplication algorithm using Montgomery's ladder with co-Z coordinates.
From http://eprint.iacr.org/2011/338.pdf
*/

/* Modify (x1, y1) => (x1 * z^2, y1 * z^3) */
static void apply_z(uECC_word_t * X1,
                    uECC_word_t * Y1,
                    const uECC_word_t * const Z,
                    uECC_Curve curve) {
    uECC_word_t t1[uECC_MAX_WORDS];

    uECC_vli_modSquare_fast(t1, Z, curve);    /* z^2 */
    uECC_vli_modMult_fast(X1, X1, t1, curve); /* x1 * z^2 */
    uECC_vli_modMult_fast(t1, t1, Z, curve);  /* z^3 */
    uECC_vli_modMult_fast(Y1, Y1, t1, curve); /* y1 * z^3 */
}

/* P = (x1, y1) => 2P, (x2, y2) => P' */
static void XYcZ_initial_double(uECC_word_t * X1,
                                uECC_word_t * Y1,
                                uECC_word_t * X2,
                                uECC_word_t * Y2,
                                const uECC_word_t * const initial_Z,
                                uECC_Curve curve) {
    uECC_word_t z[uECC_MAX_WORDS];
    wordcount_t num_words = curve->num_words;
    if (initial_Z) {
        uECC_vli_set(z, initial_Z, num_words);
    } else {
        uECC_vli_clear(z, num_words);
        z[0] = 1;
    }

    uECC_vli_set(X2, X1, num_words);
    uECC_vli_set(Y2, Y1, num_words);

    apply_z(X1, Y1, z, curve);
    curve->double_jacobian(X1, Y1, z, curve);
    apply_z(X2, Y2, z, curve);
}

/* Input P = (x1, y1, Z), Q = (x2, y2, Z)
   Output P' = (x1', y1', Z3), P + Q = (x3, y3, Z3)
   or P => P', Q => P + Q
*/
static void XYcZ_add(uECC_word_t * X1,
                     uECC_word_t * Y1,
                     uECC_word_t * X2,
                     uECC_word_t * Y2,
                     uECC_Curve curve) {
    /* t1 = X1, t2 = Y1, t3 = X2, t4 = Y2 */
    uECC_word_t t5[uECC_MAX_WORDS];
    wordcount_t num_words = curve->num_words;
    
    uECC_vli_modSub(t5, X2, X1, curve->p, num_words); /* t5 = x2 - x1 */
    uECC_vli_modSquare_fast(t5, t5, curve);                  /* t5 = (x2 - x1)^2 = A */
    uECC_vli_modMult_fast(X1, X1, t5, curve);                /* t1 = x1*A = B */
    uECC_vli_modMult_fast(X2, X2, t5, curve);                /* t3 = x2*A = C */
    uECC_vli_modSub(Y2, Y2, Y1, curve->p, num_words); /* t4 = y2 - y1 */
    uECC_vli_modSquare_fast(t5, Y2, curve);                  /* t5 = (y2 - y1)^2 = D */
                                                        
    uECC_vli_modSub(t5, t5, X1, curve->p, num_words); /* t5 = D - B */
    uECC_vli_modSub(t5, t5, X2, curve->p, num_words); /* t5 = D - B - C = x3 */
    uECC_vli_modSub(X2, X2, X1, curve->p, num_words); /* t3 = C - B */
    uECC_vli_modMult_fast(Y1, Y1, X2, curve);                /* t2 = y1*(C - B) */
    uECC_vli_modSub(X2, X1, t5, curve->p, num_words); /* t3 = B - x3 */
    uECC_vli_modMult_fast(Y2, Y2, X2, curve);                /* t4 = (y2 - y1)*(B - x3) */
    uECC_vli_modSub(Y2, Y2, Y1, curve->p, num_words); /* t4 = y3 */
    
    uECC_vli_set(X2, t5, num_words);
}

/* Input P = (x1, y1, Z), Q = (x2, y2, Z)
   Output P + Q = (x3, y3, Z3), P - Q = (x3', y3', Z3)
   or P => P - Q, Q => P + Q
*/
static void XYcZ_addC(uECC_word_t * X1,
                      uECC_word_t * Y1,
                      uECC_word_t * X2,
                      uECC_word_t * Y2,
                      uECC_Curve curve) {
    /* t1 = X1, t2 = Y1, t3 = X2, t4 = Y2 */
    uECC_word_t t5[uECC_MAX_WORDS];
    uECC_word_t t6[uECC_MAX_WORDS];
    uECC_word_t t7[uECC_MAX_WORDS];
    wordcount_t num_words = curve->num_words;
    
    uECC_vli_modSub(t5, X2, X1, curve->p, num_words); /* t5 = x2 - x1 */
    uECC_vli_modSquare_fast(t5, t5, curve);                  /* t5 = (x2 - x1)^2 = A */
    uECC_vli_modMult_fast(X1, X1, t5, curve);                /* t1 = x1*A = B */
    uECC_vli_modMult_fast(X2, X2, t5, curve);                /* t3 = x2*A = C */
    uECC_vli_modAdd(t5, Y2, Y1, curve->p, num_words); /* t5 = y2 + y1 */
    uECC_vli_modSub(Y2, Y2, Y1, curve->p, num_words); /* t4 = y2 - y1 */
                                                        
    uECC_vli_modSub(t6, X2, X1, curve->p, num_words); /* t6 = C - B */
    uECC_vli_modMult_fast(Y1, Y1, t6, curve);                /* t2 = y1 * (C - B) = E */
    uECC_vli_modAdd(t6, X1, X2, curve->p, num_words); /* t6 = B + C */
    uECC_vli_modSquare_fast(X2, Y2, curve);                  /* t3 = (y2 - y1)^2 = D */
    uECC_vli_modSub(X2, X2, t6, curve->p, num_words); /* t3 = D - (B + C) = x3 */
                                                        
    uECC_vli_modSub(t7, X1, X2, curve->p, num_words); /* t7 = B - x3 */
    uECC_vli_modMult_fast(Y2, Y2, t7, curve);                /* t4 = (y2 - y1)*(B - x3) */
    uECC_vli_modSub(Y2, Y2, Y1, curve->p, num_words); /* t4 = (y2 - y1)*(B - x3) - E = y3 */
                                                        
    uECC_vli_modSquare_fast(t7, t5, curve);                  /* t7 = (y2 + y1)^2 = F */
    uECC_vli_modSub(t7, t7, t6, curve->p, num_words); /* t7 = F - (B + C) = x3' */
    uECC_vli_modSub(t6, t7, X1, curve->p, num_words); /* t6 = x3' - B */
    uECC_vli_modMult_fast(t6, t6, t5, curve);                /* t6 = (y2+y1)*(x3' - B) */
    uECC_vli_modSub(Y1, t6, Y1, curve->p, num_words); /* t2 = (y2+y1)*(x3' - B) - E = y3' */
    
    uECC_vli_set(X1, t7, num_words);
}

/* result may overlap point. */
static void EccPoint_mult(uECC_word_t * result,
                          const uECC_word_t * point,
                          const uECC_word_t * scalar,
                          const uECC_word_t * initial_Z,
                          bitcount_t num_bits,
                          uECC_Curve curve) {
    /* R0 and R1 */
    uECC_word_t Rx[2][uECC_MAX_WORDS];
    uECC_word_t Ry[2][uECC_MAX_WORDS];
    uECC_word_t z[uECC_MAX_WORDS];
    bitcount_t i;
    uECC_word_t nb;
    wordcount_t num_words = curve->num_words;
    
    uECC_vli_set(Rx[1], point, num_words);
    uECC_vli_set(Ry[1], point + num_words, num_words);

    XYcZ_initial_double(Rx[1], Ry[1], Rx[0], Ry[0], initial_Z, curve);

    for (i = num_bits - 2; i > 0; --i) {
        nb = !uECC_vli_testBit(scalar, i);
        XYcZ_addC(Rx[1 - nb], Ry[1 - nb], Rx[nb], Ry[nb], curve);
        XYcZ_add(Rx[nb], Ry[nb], Rx[1 - nb], Ry[1 - nb], curve);
    }

    nb = !uECC_vli_testBit(scalar, 0);
    XYcZ_addC(Rx[1 - nb], Ry[1 - nb], Rx[nb], Ry[nb], curve);
    
    /* Find final 1/Z value. */
    uECC_vli_modSub(z, Rx[1], Rx[0], curve->p, num_words); /* X1 - X0 */
    uECC_vli_modMult_fast(z, z, Ry[1 - nb], curve);               /* Yb * (X1 - X0) */
    uECC_vli_modMult_fast(z, z, point, curve);                    /* xP * Yb * (X1 - X0) */
    uECC_vli_modInv(z, z, curve->p, num_words);            /* 1 / (xP * Yb * (X1 - X0)) */
    /* yP / (xP * Yb * (X1 - X0)) */
    uECC_vli_modMult_fast(z, z, point + num_words, curve); 
    uECC_vli_modMult_fast(z, z, Rx[1 - nb], curve); /* Xb * yP / (xP * Yb * (X1 - X0)) */
    /* End 1/Z calculation */

    XYcZ_add(Rx[nb], Ry[nb], Rx[1 - nb], Ry[1 - nb], curve);
    apply_z(Rx[0], Ry[0], z, curve);
    
    uECC_vli_set(result, Rx[0], num_words);
    uECC_vli_set(result + num_words, Ry[0], num_words);
}

static uECC_word_t regularize_k(const uECC_word_t * const k,
                                uECC_word_t *k0,
                                uECC_word_t *k1,
                                uECC_Curve curve) {
    wordcount_t num_n_words = BITS_TO_WORDS(curve->num_n_bits);
    bitcount_t num_n_bits = curve->num_n_bits;
    uECC_word_t carry = uECC_vli_add(k0, k, curve->n, num_n_words) ||
        (num_n_bits < ((bitcount_t)num_n_words * uECC_WORD_SIZE * 8) &&
         uECC_vli_testBit(k0, num_n_bits));
    uECC_vli_add(k1, k0, curve->n, num_n_words);
    return carry;
}

static uECC_word_t EccPoint_compute_public_key(uECC_word_t *result,
                                               uECC_word_t *private,
                                               uECC_Curve curve) {
    uECC_word_t tmp1[uECC_MAX_WORDS];
    uECC_word_t tmp2[uECC_MAX_WORDS];
    uECC_word_t *p2[2] = {tmp1, tmp2};
    uECC_word_t carry;

    /* Regularize the bitcount for the private key so that attackers cannot use a side channel
       attack to learn the number of leading zeros. */
    carry = regularize_k(private, tmp1, tmp2, curve);

    EccPoint_mult(result, curve->G, p2[!carry], 0, curve->num_n_bits + 1, curve);

    if (EccPoint_isZero(result, curve)) {
        return 0;
    }
    return 1;
}

#if uECC_WORD_SIZE == 1

uECC_VLI_API void uECC_vli_nativeToBytes(uint8_t *bytes,
                                         int num_bytes,
                                         const uint8_t *native) {
    wordcount_t i;
    for (i = 0; i < num_bytes; ++i) {
        bytes[i] = native[(num_bytes - 1) - i];
    }
}

uECC_VLI_API void uECC_vli_bytesToNative(uint8_t *native,
                                         const uint8_t *bytes,
                                         int num_bytes) {
    uECC_vli_nativeToBytes(native, num_bytes, bytes);
}

#else

uECC_VLI_API void uECC_vli_nativeToBytes(uint8_t *bytes,
                                         int num_bytes,
                                         const uECC_word_t *native) {
    wordcount_t i;
    for (i = 0; i < num_bytes; ++i) {
        unsigned b = num_bytes - 1 - i;
        bytes[i] = native[b / uECC_WORD_SIZE] >> (8 * (b % uECC_WORD_SIZE));
    }
}

uECC_VLI_API void uECC_vli_bytesToNative(uECC_word_t *native,
                                         const uint8_t *bytes,
                                         int num_bytes) {
    wordcount_t i;
    uECC_vli_clear(native, (num_bytes + (uECC_WORD_SIZE - 1)) / uECC_WORD_SIZE);
    for (i = 0; i < num_bytes; ++i) {
        unsigned b = num_bytes - 1 - i;
        native[b / uECC_WORD_SIZE] |= 
            (uECC_word_t)bytes[i] << (8 * (b % uECC_WORD_SIZE));
    }
}

#endif /* uECC_WORD_SIZE */

/* Generates a random integer in the range 0 < random < top.
   Both random and top have num_words words. */
uECC_VLI_API int uECC_generate_random_int(uECC_word_t *random,
                                          const uECC_word_t *top,
                                          wordcount_t num_words) {
    uECC_word_t mask = (uECC_word_t)-1;
    uECC_word_t tries;
    bitcount_t num_bits = uECC_vli_numBits(top, num_words);

    if (!g_rng_function) {
        return 0;
    }

    for (tries = 0; tries < uECC_RNG_MAX_TRIES; ++tries) {
        if (!g_rng_function((uint8_t *)random, num_words * uECC_WORD_SIZE)) {
            return 0;
	    }
        random[num_words - 1] &= mask >> ((bitcount_t)(num_words * uECC_WORD_SIZE * 8 - num_bits));
        if (!uECC_vli_isZero(random, num_words) &&
		        uECC_vli_cmp(top, random, num_words) == 1) {
            return 1;
        }
    }
    return 0;
}

int uECC_make_key(uint8_t *public_key,
                  uint8_t *private_key,
                  uECC_Curve curve) {
    uECC_word_t private[uECC_MAX_WORDS];
    uECC_word_t public[uECC_MAX_WORDS * 2];
    uECC_word_t tries;

    for (tries = 0; tries < uECC_RNG_MAX_TRIES; ++tries) {
        if (!uECC_generate_random_int(private, curve->n, BITS_TO_WORDS(curve->num_n_bits))) {
            return 0;
        }

        if (EccPoint_compute_public_key(public, private, curve)) {
            uECC_vli_nativeToBytes(private_key, BITS_TO_BYTES(curve->num_n_bits), private);
            uECC_vli_nativeToBytes(public_key, curve->num_bytes, public);
            uECC_vli_nativeToBytes(
                public_key + curve->num_bytes, curve->num_bytes, public + curve->num_words);
            return 1;
        }
    }
    return 0;
}

int uECC_shared_secret(const uint8_t *public_key,
                       const uint8_t *private_key,
                       uint8_t *secret,
                       uECC_Curve curve) {
    uECC_word_t public[uECC_MAX_WORDS * 2];
    uECC_word_t private[uECC_MAX_WORDS];
    uECC_word_t tmp[uECC_MAX_WORDS];
    uECC_word_t *p2[2] = {private, tmp};
    uECC_word_t *initial_Z = 0;
    uECC_word_t carry;
    wordcount_t num_words = curve->num_words;
    wordcount_t num_bytes = curve->num_bytes;
    
    uECC_vli_bytesToNative(private, private_key, BITS_TO_BYTES(curve->num_n_bits));
    uECC_vli_bytesToNative(public, public_key, num_bytes);
    uECC_vli_bytesToNative(public + num_words, public_key + num_bytes, num_bytes);
    
    /* Regularize the bitcount for the private key so that attackers cannot use a side channel
       attack to learn the number of leading zeros. */
    carry = regularize_k(private, private, tmp, curve);
    
    /* If an RNG function was specified, try to get a random initial Z value to improve
       protection against side-channel attacks. */
    if (g_rng_function) {
        if (!uECC_generate_random_int(p2[carry], curve->p, num_words)) {
            return 0;
        }
        initial_Z = p2[carry];
    }
    
    EccPoint_mult(public, public, p2[!carry], initial_Z, curve->num_n_bits + 1, curve);
    uECC_vli_nativeToBytes(secret, num_bytes, public);
    return !EccPoint_isZero(public, curve);
}

#if uECC_SUPPORT_COMPRESSED_POINT
void uECC_compress(const uint8_t *public_key, uint8_t *compressed, uECC_Curve curve) {
    wordcount_t i;
    for (i = 0; i < curve->num_bytes; ++i) {
        compressed[i+1] = public_key[i];
    }
    compressed[0] = 2 + (public_key[curve->num_bytes * 2 - 1] & 0x01);
}

void uECC_decompress(const uint8_t *compressed, uint8_t *public_key, uECC_Curve curve) {
    uECC_word_t point[uECC_MAX_WORDS * 2];
    uECC_word_t *y = point + curve->num_words;
    uECC_vli_bytesToNative(point, compressed + 1, curve->num_bytes);
    curve->x_side(y, point, curve);
    curve->mod_sqrt(y, curve);
    
    if ((y[0] & 0x01) != (compressed[0] & 0x01)) {
        uECC_vli_sub(y, curve->p, y, curve->num_words);
    }
    
    uECC_vli_nativeToBytes(public_key, curve->num_bytes, point);
    uECC_vli_nativeToBytes(public_key + curve->num_bytes, curve->num_bytes, y);
}
#endif /* uECC_SUPPORT_COMPRESSED_POINT */

int uECC_valid_point(const uECC_word_t *point, uECC_Curve curve) {
    uECC_word_t tmp1[uECC_MAX_WORDS];
    uECC_word_t tmp2[uECC_MAX_WORDS];
    wordcount_t num_words = curve->num_words;

    /* The point at infinity is invalid. */
    if (EccPoint_isZero(point, curve)) {
        return 0;
    }
    
    /* x and y must be smaller than p. */
    if (uECC_vli_cmp_unsafe(curve->p, point, num_words) != 1 ||
            uECC_vli_cmp_unsafe(curve->p, point + num_words, num_words) != 1) {
        return 0;
    }
    
    uECC_vli_modSquare_fast(tmp1, point + num_words, curve);
    curve->x_side(tmp2, point, curve); /* tmp2 = x^3 + ax + b */
    
    /* Make sure that y^2 == x^3 + ax + b */
    return (int)(uECC_vli_equal(tmp1, tmp2, num_words));
}

int uECC_valid_public_key(const uint8_t *public_key, uECC_Curve curve) {
    uECC_word_t public[uECC_MAX_WORDS * 2];

    uECC_vli_bytesToNative(public, public_key, curve->num_bytes);
    uECC_vli_bytesToNative(
        public + curve->num_words, public_key + curve->num_bytes, curve->num_bytes);
    return uECC_valid_point(public, curve);
}

int uECC_compute_public_key(const uint8_t *private_key, uint8_t *public_key, uECC_Curve curve) {
    uECC_word_t private[uECC_MAX_WORDS];
    uECC_word_t public[uECC_MAX_WORDS * 2];

    uECC_vli_bytesToNative(private, private_key, BITS_TO_BYTES(curve->num_n_bits));

    /* Make sure the private key is in the range [1, n-1]. */
    if (uECC_vli_isZero(private, BITS_TO_WORDS(curve->num_n_bits))) {
        return 0;
    }

    if (uECC_vli_cmp(curve->n, private, BITS_TO_WORDS(curve->num_n_bits)) != 1) {
        return 0;
    }

    /* Compute public key. */
    if (!EccPoint_compute_public_key(public, private, curve)) {
        return 0;
    }

    uECC_vli_nativeToBytes(public_key, curve->num_bytes, public);
    uECC_vli_nativeToBytes(
        public_key + curve->num_bytes, curve->num_bytes, public + curve->num_words);
    return 1;
}


/* -------- ECDSA code -------- */

static void bits2int(uECC_word_t *native,
                     const uint8_t *bits,
                     unsigned bits_size,
                     uECC_Curve curve) {
    unsigned num_n_bytes = BITS_TO_BYTES(curve->num_n_bits);
    unsigned num_n_words = BITS_TO_WORDS(curve->num_n_bits);
	int shift;
	uECC_word_t carry;
	uECC_word_t *ptr;

    if (bits_size > num_n_bytes) {
        bits_size = num_n_bytes;
    }
    uECC_vli_clear(native, num_n_words);
    uECC_vli_bytesToNative(native, bits, bits_size);
    if (bits_size * 8 <= (unsigned)curve->num_n_bits) {
        return;
    }
    shift = bits_size * 8 - curve->num_n_bits;
    carry = 0;
    ptr = native + num_n_words;
    while (ptr-- > native) {
        uECC_word_t temp = *ptr;
        *ptr = (temp >> shift) | carry;
        carry = temp << (uECC_WORD_BITS - shift);
    }

    /* Reduce mod curve_n */
    if (uECC_vli_cmp_unsafe(curve->n, native, num_n_words) != 1) {
        uECC_vli_sub(native, native, curve->n, num_n_words);
    }
}

static int uECC_sign_with_k(const uint8_t *private_key,
                            const uint8_t *message_hash,
                            unsigned hash_size,
                            uECC_word_t *k,
                            uint8_t *signature,
                            uECC_Curve curve) {
    uECC_word_t tmp[uECC_MAX_WORDS];
    uECC_word_t s[uECC_MAX_WORDS];
    uECC_word_t *k2[2] = {tmp, s};
    uECC_word_t p[uECC_MAX_WORDS * 2];
    uECC_word_t carry;
    wordcount_t num_words = curve->num_words;
    wordcount_t num_n_words = BITS_TO_WORDS(curve->num_n_bits);
    bitcount_t num_n_bits = curve->num_n_bits;
    
    /* Make sure 0 < k < curve_n */
    if (uECC_vli_isZero(k, num_words) || uECC_vli_cmp(curve->n, k, num_n_words) != 1) {
        return 0;
    }
    
    carry = regularize_k(k, tmp, s, curve);
    EccPoint_mult(p, curve->G, k2[!carry], 0, num_n_bits + 1, curve);
    if (uECC_vli_isZero(p, num_words)) {
        return 0;
    }
    
    /* If an RNG function was specified, get a random number
       to prevent side channel analysis of k. */
    if (!g_rng_function) {
        uECC_vli_clear(tmp, num_n_words);
        tmp[0] = 1;
    } else if (!uECC_generate_random_int(tmp, curve->n, num_n_words)) {
        return 0;
    }

    /* Prevent side channel analysis of uECC_vli_modInv() to determine
       bits of k / the private key by premultiplying by a random number */
    uECC_vli_modMult(k, k, tmp, curve->n, num_n_words); /* k' = rand * k */
    uECC_vli_modInv(k, k, curve->n, num_n_words);       /* k = 1 / k' */
    uECC_vli_modMult(k, k, tmp, curve->n, num_n_words); /* k = 1 / k */
    
    uECC_vli_nativeToBytes(signature, curve->num_bytes, p); /* store r */
    
    uECC_vli_bytesToNative(tmp, private_key, BITS_TO_BYTES(curve->num_n_bits)); /* tmp = d */
    s[num_n_words - 1] = 0;
    uECC_vli_set(s, p, num_words);
    uECC_vli_modMult(s, tmp, s, curve->n, num_n_words); /* s = r*d */

    bits2int(tmp, message_hash, hash_size, curve);
    uECC_vli_modAdd(s, tmp, s, curve->n, num_n_words); /* s = e + r*d */
    uECC_vli_modMult(s, s, k, curve->n, num_n_words);  /* s = (e + r*d) / k */
    if (uECC_vli_numBits(s, num_n_words) > (bitcount_t)curve->num_bytes * 8) {
        return 0;
    }
    uECC_vli_nativeToBytes(signature + curve->num_bytes, curve->num_bytes, s);
    return 1;
}

int uECC_sign(const uint8_t *private_key,
              const uint8_t *message_hash,
              unsigned hash_size,
              uint8_t *signature,
              uECC_Curve curve) {
    uECC_word_t k[uECC_MAX_WORDS];
    uECC_word_t tries;

    for (tries = 0; tries < uECC_RNG_MAX_TRIES; ++tries) {
        if (!uECC_generate_random_int(k, curve->n, BITS_TO_WORDS(curve->num_n_bits))) {
            return 0;
        }

        if (uECC_sign_with_k(private_key, message_hash, hash_size, k, signature, curve)) {
            return 1;
        }
    }
    return 0;
}

/* Compute an HMAC using K as a key (as in RFC 6979). Note that K is always
   the same size as the hash result size. */
static void HMAC_init(uECC_HashContext *hash_context, const uint8_t *K) {
    uint8_t *pad = hash_context->tmp + 2 * hash_context->result_size;
    unsigned i;
    for (i = 0; i < hash_context->result_size; ++i)
        pad[i] = K[i] ^ 0x36;
    for (; i < hash_context->block_size; ++i)
        pad[i] = 0x36;

    hash_context->init_hash(hash_context);
    hash_context->update_hash(hash_context, pad, hash_context->block_size);
}

static void HMAC_update(uECC_HashContext *hash_context,
                        const uint8_t *message,
                        unsigned message_size) {
    hash_context->update_hash(hash_context, message, message_size);
}

static void HMAC_finish(uECC_HashContext *hash_context, const uint8_t *K, uint8_t *result) {
    uint8_t *pad = hash_context->tmp + 2 * hash_context->result_size;
    unsigned i;
    for (i = 0; i < hash_context->result_size; ++i)
        pad[i] = K[i] ^ 0x5c;
    for (; i < hash_context->block_size; ++i)
        pad[i] = 0x5c;

    hash_context->finish_hash(hash_context, result);

    hash_context->init_hash(hash_context);
    hash_context->update_hash(hash_context, pad, hash_context->block_size);
    hash_context->update_hash(hash_context, result, hash_context->result_size);
    hash_context->finish_hash(hash_context, result);
}

/* V = HMAC_K(V) */
static void update_V(uECC_HashContext *hash_context, uint8_t *K, uint8_t *V) {
    HMAC_init(hash_context, K);
    HMAC_update(hash_context, V, hash_context->result_size);
    HMAC_finish(hash_context, K, V);
}

/* Deterministic signing, similar to RFC 6979. Differences are:
    * We just use H(m) directly rather than bits2octets(H(m))
      (it is not reduced modulo curve_n).
    * We generate a value for k (aka T) directly rather than converting endianness.

   Layout of hash_context->tmp: <K> | <V> | (1 byte overlapped 0x00 or 0x01) / <HMAC pad> */
int uECC_sign_deterministic(const uint8_t *private_key,
                            const uint8_t *message_hash,
                            unsigned hash_size,
                            uECC_HashContext *hash_context,
                            uint8_t *signature,
                            uECC_Curve curve) {
    uint8_t *K = hash_context->tmp;
    uint8_t *V = K + hash_context->result_size;
    wordcount_t num_bytes = curve->num_bytes;
    wordcount_t num_n_words = BITS_TO_WORDS(curve->num_n_bits);
    bitcount_t num_n_bits = curve->num_n_bits;
    uECC_word_t tries;
    unsigned i;
    for (i = 0; i < hash_context->result_size; ++i) {
        V[i] = 0x01;
        K[i] = 0;
    }
    
    /* K = HMAC_K(V || 0x00 || int2octets(x) || h(m)) */
    HMAC_init(hash_context, K);
    V[hash_context->result_size] = 0x00;
    HMAC_update(hash_context, V, hash_context->result_size + 1);
    HMAC_update(hash_context, private_key, num_bytes);
    HMAC_update(hash_context, message_hash, hash_size);
    HMAC_finish(hash_context, K, K);

    update_V(hash_context, K, V);
    
    /* K = HMAC_K(V || 0x01 || int2octets(x) || h(m)) */
    HMAC_init(hash_context, K);
    V[hash_context->result_size] = 0x01;
    HMAC_update(hash_context, V, hash_context->result_size + 1);
    HMAC_update(hash_context, private_key, num_bytes);
    HMAC_update(hash_context, message_hash, hash_size);
    HMAC_finish(hash_context, K, K);

    update_V(hash_context, K, V);

    for (tries = 0; tries < uECC_RNG_MAX_TRIES; ++tries) {
        uECC_word_t T[uECC_MAX_WORDS];
        uint8_t *T_ptr = (uint8_t *)T;
        wordcount_t T_bytes = 0;
        for (;;) {
            update_V(hash_context, K, V);
            for (i = 0; i < hash_context->result_size; ++i) {
                T_ptr[T_bytes++] = V[i];
                if (T_bytes >= num_n_words * uECC_WORD_SIZE) {
                    goto filled;
                }
            }
        }
    filled:
        if ((bitcount_t)num_n_words * uECC_WORD_SIZE * 8 > num_n_bits) {
            uECC_word_t mask = (uECC_word_t)-1;
            T[num_n_words - 1] &=
                mask >> ((bitcount_t)(num_n_words * uECC_WORD_SIZE * 8 - num_n_bits));
        }
    
        if (uECC_sign_with_k(private_key, message_hash, hash_size, T, signature, curve)) {
            return 1;
        }

        /* K = HMAC_K(V || 0x00) */
        HMAC_init(hash_context, K);
        V[hash_context->result_size] = 0x00;
        HMAC_update(hash_context, V, hash_context->result_size + 1);
        HMAC_finish(hash_context, K, K);

        update_V(hash_context, K, V);
    }
    return 0;
}

static bitcount_t smax(bitcount_t a, bitcount_t b) {
    return (a > b ? a : b);
}

int uECC_verify(const uint8_t *public_key,
                const uint8_t *message_hash,
                unsigned hash_size,
                const uint8_t *signature,
                uECC_Curve curve) {
    uECC_word_t u1[uECC_MAX_WORDS], u2[uECC_MAX_WORDS];
    uECC_word_t z[uECC_MAX_WORDS];
    uECC_word_t public[uECC_MAX_WORDS * 2];
    uECC_word_t sum[uECC_MAX_WORDS * 2];
    uECC_word_t rx[uECC_MAX_WORDS];
    uECC_word_t ry[uECC_MAX_WORDS];
    uECC_word_t tx[uECC_MAX_WORDS];
    uECC_word_t ty[uECC_MAX_WORDS];
    uECC_word_t tz[uECC_MAX_WORDS];
    const uECC_word_t *points[4];
    const uECC_word_t *point;
    bitcount_t num_bits;
    bitcount_t i;
    uECC_word_t r[uECC_MAX_WORDS], s[uECC_MAX_WORDS];
    wordcount_t num_words = curve->num_words;
    wordcount_t num_n_words = BITS_TO_WORDS(curve->num_n_bits);
    
    rx[num_n_words - 1] = 0;
    r[num_n_words - 1] = 0;
    s[num_n_words - 1] = 0;

    uECC_vli_bytesToNative(public, public_key, curve->num_bytes);
    uECC_vli_bytesToNative(
        public + num_words, public_key + curve->num_bytes, curve->num_bytes);
    uECC_vli_bytesToNative(r, signature, curve->num_bytes);
    uECC_vli_bytesToNative(s, signature + curve->num_bytes, curve->num_bytes);
    
    /* r, s must not be 0. */
    if (uECC_vli_isZero(r, num_words) || uECC_vli_isZero(s, num_words)) {
        return 0;
    }

    /* r, s must be < n. */
    if (uECC_vli_cmp_unsafe(curve->n, r, num_n_words) != 1 ||
            uECC_vli_cmp_unsafe(curve->n, s, num_n_words) != 1) {
        return 0;
    }

    /* Calculate u1 and u2. */
    uECC_vli_modInv(z, s, curve->n, num_n_words); /* z = 1/s */
    u1[num_n_words - 1] = 0;
    bits2int(u1, message_hash, hash_size, curve);
    uECC_vli_modMult(u1, u1, z, curve->n, num_n_words); /* u1 = e/s */
    uECC_vli_modMult(u2, r, z, curve->n, num_n_words); /* u2 = r/s */
    
    /* Calculate sum = G + Q. */
    uECC_vli_set(sum, public, num_words);
    uECC_vli_set(sum + num_words, public + num_words, num_words);
    uECC_vli_set(tx, curve->G, num_words);
    uECC_vli_set(ty, curve->G + num_words, num_words);
    uECC_vli_modSub(z, sum, tx, curve->p, num_words); /* z = x2 - x1 */
    XYcZ_add(tx, ty, sum, sum + num_words, curve);
    uECC_vli_modInv(z, z, curve->p, num_words); /* z = 1/z */
    apply_z(sum, sum + num_words, z, curve);
    
    /* Use Shamir's trick to calculate u1*G + u2*Q */
    points[0] = 0;
    points[1] = curve->G;
    points[2] = public;
    points[3] = sum;
    num_bits = smax(uECC_vli_numBits(u1, num_n_words),
                    uECC_vli_numBits(u2, num_n_words));
    
    point = points[(!!uECC_vli_testBit(u1, num_bits - 1)) |
                   ((!!uECC_vli_testBit(u2, num_bits - 1)) << 1)];
    uECC_vli_set(rx, point, num_words);
    uECC_vli_set(ry, point + num_words, num_words);
    uECC_vli_clear(z, num_words);
    z[0] = 1;

    for (i = num_bits - 2; i >= 0; --i) {
        uECC_word_t index;
        curve->double_jacobian(rx, ry, z, curve);
        
        index = (!!uECC_vli_testBit(u1, i)) | ((!!uECC_vli_testBit(u2, i)) << 1);
        point = points[index];
        if (point) {
            uECC_vli_set(tx, point, num_words);
            uECC_vli_set(ty, point + num_words, num_words);
            apply_z(tx, ty, z, curve);
            uECC_vli_modSub(tz, rx, tx, curve->p, num_words); /* Z = x2 - x1 */
            XYcZ_add(tx, ty, rx, ry, curve);
            uECC_vli_modMult_fast(z, z, tz, curve);
        }
    }

    uECC_vli_modInv(z, z, curve->p, num_words); /* Z = 1/Z */
    apply_z(rx, ry, z, curve);
    
    /* v = x1 (mod n) */
    if (uECC_vli_cmp_unsafe(curve->n, rx, num_n_words) != 1) {
        uECC_vli_sub(rx, rx, curve->n, num_n_words);
    }

    /* Accept only if v == r. */
    return (int)(uECC_vli_equal(rx, r, num_words));
}

#if uECC_ENABLE_VLI_API

unsigned uECC_curve_num_words(uECC_Curve curve) {
    return curve->num_words;
}

unsigned uECC_curve_num_bits(uECC_Curve curve) {
    return curve->num_bytes * 8;
}

unsigned uECC_curve_num_n_words(uECC_Curve curve) {
    return BITS_TO_WORDS(curve->num_n_bits);
}

unsigned uECC_curve_num_n_bits(uECC_Curve curve) {
    return curve->num_n_bits;
}

const uECC_word_t *uECC_curve_p(uECC_Curve curve) {
    return curve->p;
}

const uECC_word_t *uECC_curve_n(uECC_Curve curve) {
    return curve->n;
}

const uECC_word_t *uECC_curve_G(uECC_Curve curve) {
    return curve->G;
}

const uECC_word_t *uECC_curve_b(uECC_Curve curve) {
    return curve->b;
}

#if uECC_SUPPORT_COMPRESSED_POINT
void uECC_vli_mod_sqrt(uECC_word_t *a, uECC_Curve curve) {
    curve->mod_sqrt(a, curve);
}
#endif

void uECC_vli_mmod_fast(uECC_word_t *result, uECC_word_t *product, uECC_Curve curve) {
#if (uECC_OPTIMIZATION_LEVEL > 0)
    curve->mmod_fast(result, product);
#else
    uECC_vli_mmod(result, product, curve->p, curve->num_words);
#endif
}

void uECC_point_mult(uECC_word_t *result,
                     const uECC_word_t *point,
                     const uECC_word_t *scalar,
                     uECC_Curve curve) {
    uECC_word_t tmp1[uECC_MAX_WORDS];
    uECC_word_t tmp2[uECC_MAX_WORDS];
    uECC_word_t *p2[2] = {tmp1, tmp2};
    uECC_word_t carry = regularize_k(scalar, tmp1, tmp2, curve);

    EccPoint_mult(result, point, p2[!carry], 0, curve->num_n_bits + 1, curve);
}

#endif /* uECC_ENABLE_VLI_API */