Codebase list mfterm / 2bb24c41-47aa-4a1e-8de2-5a8aca3541dd/upstream mifare_ctrl.c
2bb24c41-47aa-4a1e-8de2-5a8aca3541dd/upstream

Tree @2bb24c41-47aa-4a1e-8de2-5a8aca3541dd/upstream (Download .tar.gz)

mifare_ctrl.c @2bb24c41-47aa-4a1e-8de2-5a8aca3541dd/upstreamraw · history · blame

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
/**
 * Copyright (C) 2011 Anders Sundman <[email protected]>
 *
 * This file is part of mfterm.
 *
 * mfterm is free software: you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation, either version 3 of the License, or
 * (at your option) any later version.

 * mfterm is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.

 * You should have received a copy of the GNU General Public License
 * along with mfterm.  If not, see <http://www.gnu.org/licenses/>.
 *
 * Parts of code used in this file are based on the Public platform
 * independent Near Field Communication (NFC) library example
 * nfc-mfclassic.c. It is thus covered by that license as well:
 *
 * Copyright (C) 2009, Roel Verdult
 * Copyright (C) 2010, Romuald Conty, Romain Tartière
 * Copyright (C) 2011, Adam Laurie
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions are met:
 *  1) Redistributions of source code must retain the above copyright notice,
 *  this list of conditions and the following disclaimer.
 *  2 )Redistributions in binary form must reproduce the above copyright
 *  notice, this list of conditions and the following disclaimer in the
 *  documentation and/or other materials provided with the distribution.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
 * POSSIBILITY OF SUCH DAMAGE.
 */

#include <stdio.h>
#include <string.h>
#include <nfc/nfc.h>
#include "mifare.h"
#include "tag.h"
#include "mifare_ctrl.h"

// State of the device/tag - should be NULL between high level calls.
static nfc_device* device = NULL;
static nfc_target target;
static mf_size_t size;
static nfc_context* context;

static const nfc_modulation mf_nfc_modulation = {
  .nmt = NMT_ISO14443A,
  .nbr = NBR_106,
};

// Buffers used for raw bit/byte writes
#define MAX_FRAME_LEN 264
static uint8_t abtRx[MAX_FRAME_LEN];
static int szRxBits;


int mf_connect();
int mf_disconnect(int ret_state);

bool mf_configure_device();
bool mf_select_target();

bool mf_authenticate(size_t block,
                     const uint8_t* key,
                     mf_key_type_t key_type);

bool mf_unlock();

bool mf_read_tag_internal(mf_tag_t* tag,
                          const mf_tag_t* keys,
                          mf_key_type_t key_type);

bool mf_write_tag_internal(const mf_tag_t* tag,
                           const mf_tag_t* keys,
                           mf_key_type_t key_type);

bool mf_dictionary_attack_internal(mf_tag_t* tag);

bool mf_test_auth_internal(const mf_tag_t* keys,
                           mf_size_t size,
                           mf_key_type_t key_type);


bool transmit_bits(const uint8_t *pbtTx, const size_t szTxBits);
bool transmit_bytes(const uint8_t *pbtTx, const size_t szTx);

int mf_disconnect(int ret_state) {
  nfc_close(device);
  nfc_exit(context);
  device = NULL;
  memset(&target, 0, sizeof(target));
  return ret_state;
}

int mf_connect() {

  // Initialize libnfc and set the nfc_context
  nfc_init(&context);

  // Connect to (any) NFC reader
  device = nfc_open(context, NULL);
  if (device == NULL) {
    printf ("Could not connect to any NFC device\n");
    return -1; // Don't jump here, since we don't need to disconnect
  }

  // Initialize the device as a reader
  if (!mf_configure_device()) {
    printf("Error initializing NFC device\n");
    return mf_disconnect(-1);
  }

  // Try to find a tag
  if (!mf_select_target() || target.nti.nai.btSak == 0) {
    printf("Connected to device, but no tag found.\n");
    return mf_disconnect(-1);
  }

  // Allow SAK & ATQA == 0. Assume 1k pirate card.
  if (target.nti.nai.btSak == 0 && target.nti.nai.abtAtqa[1] == 0) {
    size = MF_1K;
    return 0;
  }

  // Test if we are dealing with a Mifare Classic compatible tag
  if ((target.nti.nai.btSak & 0x08) == 0) {
    printf("Incompatible tag type: 0x%02x (i.e. not Mifare Classic).\n",
           target.nti.nai.btSak);
    return mf_disconnect(-1);
  }

  // Guessing tag size
  if ((target.nti.nai.abtAtqa[1] & 0x02)) { // 4K
    size = MF_4K;
  }
  else if ((target.nti.nai.abtAtqa[1] & 0x04)) { // 1K
    size = MF_1K;
  }
  else {
    printf("Unsupported tag size. ATQA 0x%02x 0x%02x (i.e. not [1|4]K.)\n",
           target.nti.nai.abtAtqa[0], target.nti.nai.abtAtqa[1]);
    return mf_disconnect(-1);
  }

  return 0; // Indicate success - we are now connected
}


int mf_read_tag(mf_tag_t* tag, mf_key_type_t key_type) {

  if (mf_connect())
    return -1; // No need to disconnect here

  if (key_type == MF_KEY_UNLOCKED) {
    if (!mf_unlock()) {
      printf("Unlocked read requested, but unlock failed!\n");
      return false;
    }
  }

  if (!mf_read_tag_internal(tag, &current_auth, key_type)) {
    printf("Read failed!\n");
    return mf_disconnect(-1);
  }

  // Print the type of card
  if (target.nti.nai.btSak == 0x08 &&
      target.nti.nai.abtAtqa[0] == 0x00 && target.nti.nai.abtAtqa[1] == 0x04) {
    printf("Read MIFARE Classic 1k (SAK: 08, ATQA: 00 04)\n");
  }
  else if (target.nti.nai.btSak == 0x18 &&
           target.nti.nai.abtAtqa[0] == 0x00 && target.nti.nai.abtAtqa[1] == 0x02) {
    printf("Read MIFARE Classic 4k (SAK: 18, ATQA: 00 02)\n");
  }
  else {
    printf("Read unknown tag.\n");
  }

  return mf_disconnect(0);
}


int mf_write_tag(const mf_tag_t* tag, mf_key_type_t key_type) {
  if (mf_connect())
    return -1; // No need to disconnect here

  if (key_type == MF_KEY_UNLOCKED) {
    if (!mf_unlock()) {
      printf("Unlocked write requested, but unlock failed!\n");
      return false;
    }
  }

  if (!mf_write_tag_internal(tag, &current_auth, key_type)) {
    printf("Write failed!\n");
    return mf_disconnect(-1);
  }

  return mf_disconnect(0);
}

int mf_dictionary_attack(mf_tag_t* tag) {

  if (mf_connect()) {
    return -1; // No need to disconnect here
  }

  if (!mf_dictionary_attack_internal(tag)) {
    printf("Dictionary attack failed!\n");
    return mf_disconnect(-1);
  }

  return mf_disconnect(0);
}


int mf_test_auth(const mf_tag_t* keys,
                 mf_size_t size,
                 mf_key_type_t key_type) {

  if (mf_connect()) {
    return -1; // No need to disconnect here
  }

  if (!mf_test_auth_internal(keys, size, key_type)) {
    printf("Test authentication failed!\n");
    return mf_disconnect(-1);
  }

  return mf_disconnect(0);
}


bool mf_configure_device() {

  // Disallow invalid frame
  if (nfc_device_set_property_bool(device, NP_ACCEPT_INVALID_FRAMES, false) < 0)
    return false;

  // Disallow multiple frames
  if (nfc_device_set_property_bool(device, NP_ACCEPT_MULTIPLE_FRAMES, false) < 0)
    return false;

  // Make sure we reset the CRC and parity to chip handling.
  if (nfc_device_set_property_bool(device, NP_HANDLE_CRC, true) < 0)
    return false;

  if (nfc_device_set_property_bool(device, NP_HANDLE_PARITY, true) < 0)
    return false;

  // Disable ISO14443-4 switching in order to read devices that emulate
  // Mifare Classic with ISO14443-4 compliance.
  if (nfc_device_set_property_bool(device, NP_AUTO_ISO14443_4, false) < 0)
    return false;

  // Activate "easy framing" feature by default
  if (nfc_device_set_property_bool(device, NP_EASY_FRAMING, true) < 0)
    return false;

  // Deactivate the CRYPTO1 cipher, it may could cause problems when
  // still active
  if (nfc_device_set_property_bool(device, NP_ACTIVATE_CRYPTO1, false) < 0)
    return false;

  // Drop explicitely the field
  if (nfc_device_set_property_bool(device, NP_ACTIVATE_FIELD, false) < 0)
    return false;

  // Override default initialization option, only try to select a tag once.
  if (nfc_device_set_property_bool(device, NP_INFINITE_SELECT, false) < 0)
    return false;

  return true;
}

bool mf_select_target() {
  if (nfc_initiator_select_passive_target(device,
                                          mf_nfc_modulation,
                                          NULL,   // init data
                                          0,      // init data len
                                          &target) < 0) {
    return false;
  }
  return true;
}

/**
 * Unlocking the card allows writing to block 0 of some pirate cards.
 */
bool mf_unlock() {
  static uint8_t  abtHalt[4] = { 0x50, 0x00, 0x00, 0x00 };

  // Special unlock command
  static const uint8_t  abtUnlock1[1] = { 0x40 };
  static const uint8_t  abtUnlock2[1] = { 0x43 };

  // Disable CRC and parity checking
  if (nfc_device_set_property_bool(device, NP_HANDLE_CRC, false) < 0)
    return false;

  // Disable easy framing. Use raw send/receive methods
  if (nfc_device_set_property_bool (device, NP_EASY_FRAMING, false) < 0)
    return false;

  // Initialize transmision
  iso14443a_crc_append(abtHalt, 2);
  transmit_bytes(abtHalt, 4);

  // Send unlock
  if (!transmit_bits (abtUnlock1, 7))
    return false;

  if (!transmit_bytes (abtUnlock2, 1))
    return false;

  // Reset reader configuration. CRC and easy framing.
  if (nfc_device_set_property_bool (device, NP_HANDLE_CRC, true) < 0)
    return false;
  if (nfc_device_set_property_bool (device, NP_EASY_FRAMING, true) < 0)
    return false;

  return true;
}

bool mf_read_tag_internal(mf_tag_t* tag,
                          const mf_tag_t* keys, mf_key_type_t key_type) {
  mifare_param mp;

  static mf_tag_t buffer_tag;
  clear_tag(&buffer_tag);

  int error = 0;

  printf("Reading: ["); fflush(stdout);

  // Read the card from end to begin
  for (int block_it = (int)block_count(size) - 1; block_it >= 0; --block_it) {
    size_t block = (size_t)block_it;

    // Print progress for the unlocked read
    if (key_type == MF_KEY_UNLOCKED && is_trailer_block(block)) {
      printf("."); fflush(stdout);
    }

    // Authenticate everytime we reach a trailer block
    // unless we are doing an unlocked read
    if (key_type != MF_KEY_UNLOCKED && is_trailer_block(block)) {

      // Try to authenticate for the current sector
      uint8_t* key = key_from_tag(keys, key_type, block);
      if (!mf_authenticate(block, key, key_type)) {
        // Progress indication and error report
        printf("0x%02zx", block_to_sector(block));
        if (block != 3) printf(".");
        fflush(stdout);

        block_it -= (int)sector_size(block) - 1; // Skip the rest of the sector blocks
        error = 1;
      }
      else {
        // Try to read the trailer (only to *read* the access bits)
        if (nfc_initiator_mifare_cmd(device, MC_READ, (uint8_t)block, &mp)) {
          // Copy the keys over to our tag buffer
          key_to_tag(&buffer_tag, keys->amb[block].mbt.abtKeyA, MF_KEY_A, block);
          key_to_tag(&buffer_tag, keys->amb[block].mbt.abtKeyB, MF_KEY_B, block);

          // Store the retrieved access bits in the tag buffer
          memcpy(buffer_tag.amb[block].mbt.abtAccessBits,
                 mp.mpd.abtData + 6, 4);
        } else {
          printf ("\nUnable to read trailer block: 0x%02zx.\n", block);
          return false;
        }
        printf("."); fflush(stdout); // Progress indicator
      }
    }

    else { // I.e. not a sector trailer
      // Try to read out the block
      if (!nfc_initiator_mifare_cmd(device, MC_READ, (uint8_t)block, &mp)) {
        printf("\nUnable to read block: 0x%02zx.\n", block);
        return false;
      }
      memcpy(buffer_tag.amb[block].mbd.abtData, mp.mpd.abtData, 0x10);
    }
  }

  // Terminate progress indicator
  if (error)
    printf("] Auth errors in indicated sectors.\n");
  else
    printf("] Success!\n");

  // Success! Copy the data
  // todo: Or return static ptr?
  memcpy(tag, &buffer_tag, MF_4K);

  return true;
}


bool mf_write_tag_internal(const mf_tag_t* tag,
                           const mf_tag_t* keys,
                           mf_key_type_t key_type) {

  mifare_param mp;
  int error = 0;

  printf("Writing %s tag [", sprint_size(size)); fflush(stdout);

  // Process each sector in turn
  for (int header_block_it = sector_header_iterator(0);
       header_block_it != -1;
       header_block_it = sector_header_iterator(size)) {
    size_t header_block = (size_t)header_block_it;

    // Authenticate
    uint8_t* key = key_from_tag(keys, key_type, header_block);
    if (key_type != MF_KEY_UNLOCKED) {
      if (!mf_authenticate(header_block, key, key_type)) {
        // Progress indication and error report
        if (header_block != 0) printf(".");
        printf("0x%02zx", block_to_sector(header_block));
        fflush(stdout);

        error = 1;
        continue; // Skip the rest of the sector blocks
      }
    }

    // Write the sectors blocks
    for (size_t block = header_block, trailer = block_to_trailer(header_block);
         block < trailer; ++block) {

      // First block on tag is read only - skip it unless unlocked
      if (block == 0 && key_type != MF_KEY_UNLOCKED)
        continue;

      // Try to write the data block
      memcpy (mp.mpd.abtData, tag->amb[block].mbd.abtData, 0x10);

      // do not write a block 0 with incorrect BCC - card will be made invalid!
      if (block == 0) {
        if((mp.mpd.abtData[0] ^ mp.mpd.abtData[1] ^ mp.mpd.abtData[2] ^
            mp.mpd.abtData[3] ^ mp.mpd.abtData[4]) != 0x00) {
          printf ("\nError: incorrect BCC in MFD file!\n"); // ADD DATA
          return false;
        }
      }

      // Write the data block
      if (!nfc_initiator_mifare_cmd(device, MC_WRITE, (uint8_t)block, &mp)) {
        printf("\nUnable to write block: 0x%02zx.\n", block);
        return false;
      }
    }

    // Auth ok and sector read ok, finish up by reading trailer
    size_t trailer_block = block_to_trailer(header_block);
    memcpy (mp.mpd.abtData, tag->amb[trailer_block].mbt.abtKeyA, 6);
    memcpy (mp.mpd.abtData + 6, tag->amb[trailer_block].mbt.abtAccessBits, 4);
    memcpy (mp.mpd.abtData + 10, tag->amb[trailer_block].mbt.abtKeyB, 6);

    // Try to write the trailer
    if (!nfc_initiator_mifare_cmd(device, MC_WRITE, (uint8_t)trailer_block, &mp)) {
      printf("\nUnable to write block: 0x%02zx.\n", trailer_block);
      return false;
    }

    printf("."); fflush(stdout); // Progress indicator
  }

  // Terminate progress indicator
  if (error)
    printf("] Auth errors in indicated sectors.\n");
  else
    printf("] Success!\n");

  return true;
}


bool mf_dictionary_attack_internal(mf_tag_t* tag) {

  // Tag buffer to swap in if we find all keys
  int all_keys_found = 1;
  static mf_tag_t buffer_tag;
  clear_tag(&buffer_tag);

  // Iterate over the start blocks in all sectors
  for (int block_it = sector_header_iterator(0);
       block_it != -1;
       block_it = sector_header_iterator(size)) {
    size_t block = (size_t)block_it;

    printf("Working on sector: %02zx [", block_to_sector(block));

    const uint8_t* key_a = NULL;
    const uint8_t* key_b = NULL;

    // Iterate we run out of dictionary keys or the sector is cracked
    const key_list_t* key_it = dictionary_get();
    while(key_it && (key_a == NULL || key_b == NULL)) {

      // Try to authenticate for the current sector
      if (key_a == NULL &&
          mf_authenticate(block, key_it->key, MF_KEY_A)) {
        key_a = key_it->key;
      }

      // Try to authenticate for the current sector
      if (key_b == NULL &&
          mf_authenticate(block, key_it->key, MF_KEY_B)) {
        key_b = key_it->key;
      }

      key_it = key_it->next;

      printf("."); fflush(stdout); // Progress indicator
    }

    printf("]\n");

    printf("  A Key: ");
    if (key_a) {
      printf("%s\n", sprint_key(key_a));

      // Optimize dictionary by moving key to the front
      dictionary_add(key_a);

      // Save key in the buffer
      key_to_tag(&buffer_tag, key_a, MF_KEY_A, block);
    }
    else {
      all_keys_found = 0;
      printf("Not found\n");
    }

    printf("  B Key: ");
    if (key_b) {
      printf("%s\n", sprint_key(key_b));

      // Optimize dictionary by moving key to the front
      dictionary_add(key_b);

      // Save key in the buffer
      key_to_tag(&buffer_tag, key_b, MF_KEY_B, block);
    }
    else {
      all_keys_found = 0;
      printf("Not found\n");
    }

  }

  if (all_keys_found)
    printf("All keys were found\n");

  // Use the found keys
  memcpy(tag, &buffer_tag, MF_4K);

  return true;
}


bool mf_test_auth_internal(const mf_tag_t* keys,
                          mf_size_t size,
                          mf_key_type_t key_type) {

  printf("xS  T  Key           Status\n");
  printf("----------------------------\n");

  for (int block_it = sector_header_iterator(0);
       block_it != -1;
       block_it = sector_header_iterator(size)) {
    size_t block = (size_t)block_it;

    uint8_t* key = key_from_tag(keys, key_type, block);
    printf("%02zx  %c  %s  ",
           block_to_sector(block),
           key_type,
           sprint_key(key));


    if (!mf_authenticate(block, key, key_type)) {
      printf("Failure");
    }
    else {
      printf("Success");
    }

    printf("\n");
  }

  return true;
}


bool mf_authenticate(size_t block, const uint8_t* key, mf_key_type_t key_type) {

  mifare_param mp;

  // Set the authentication information (uid)
  memcpy(mp.mpa.abtAuthUid, target.nti.nai.abtUid + target.nti.nai.szUidLen - 4, 4);

  // Select key for authentication
  mifare_cmd mc = (key_type == MF_KEY_A) ? MC_AUTH_A : MC_AUTH_B;

  // Set the key
  memcpy(mp.mpa.abtKey, key, 6);

  // Try to authenticate for the current sector
  if (nfc_initiator_mifare_cmd(device, mc, (uint8_t)block, &mp))
    return true;

  // Do the hand shaking again if auth failed
  nfc_initiator_select_passive_target(device, mf_nfc_modulation,
                                      NULL, 0, &target);

  return false;
}

bool transmit_bits(const uint8_t *pbtTx, const size_t szTxBits)
{
  // Transmit the bit frame command, we don't use the arbitrary parity feature
  if ((szRxBits = nfc_initiator_transceive_bits(device, pbtTx, szTxBits, NULL, abtRx, sizeof(abtRx), NULL)) < 0)
    return false;

  return true;
}


bool transmit_bytes(const uint8_t *pbtTx, const size_t szTx)
{
  // Transmit the command bytes
  if (nfc_initiator_transceive_bytes(device, pbtTx, szTx, abtRx, sizeof(abtRx), 0) < 0)
    return false;

  return true;
}